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Chapter 1

Introduction

The growing amount of digital images caused by the more and more ubiquitous presence
of digital cameras and, as a result, the many images on the world wide web confronts the
users with new problems. Images are a fundamental part of our daily communication. The
German saying “Ein Bild sagt mehr als tausend Worte” (literally: “A picture says more than
a thousand words.”) reflects this. The huge amount of pictures digitally available is not
manageable by humans any more [Chen & Wang 02]. A person searching for a picture in a
database of 100 images will probably find what she searches for quite fast by just viewing the
images or small versions of the images (thumbnails). If a thousand, ten thousand, or even more
images are involved, the task becomes boring and interminable [Markkula & Sormunen 98].
Computers might be able to help here in the same way as they already do for searching
text documents. A well-established example for text retrieval is the Internet search engine
Google. Entering some keywords often helps finding related documents from the vast amount
of documents available on the Internet. Google also offers a possibility to search for images,
but the way the search is performed does not always lead to satisfactory results.

One way to search in image databases is to create a textual description of all the images
in the database and use the methods from text-based information retrieval to search based
on the textual descriptions. Unfortunately, this method is not feasible. On the one hand
annotating images has to be done manually and is a very time-consuming task and on the
other hand images may have contents that words cannot convey. Due to the rich content
of images and the subjectivity of human perception no textual description can be absolutely
complete and 100% correct [Siggelkow 02]. For example it is difficult to cover the complete
spirit of Da Vinci’s Mona Lisa in words or the mood of a sunset at the seaside. Similarity
of images depends on the user and the context of the query. In a general image database
a radiograph might only be labeled as “radiograph” whereas this obviously is not sufficient
within a medical database consisting of different types of radiographs only.

Apparently, other methods to search and index images are needed. A broad variety of
applications requires searching for images: in medical applications many images are produced
and a physician might search for similar images to learn about treatments of former patients
and their outcomes [Petrakis & Faloutsos+ 02]. A journalist might look for an image to
illustrate an article [Markkula & Sormunen 98]. All these examples confront us with the
same problem: The search is not an exact search like in traditional databases (e.g. the
physician asks the database for the treatment of a patient with a certain name) but instead,
the search is imprecise. That is, we are looking for similar entries from the database. Similar
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(this imprecise criterion) has to be precisely defined to enable an automatic search process.
In fact it is possible to reason precisely about imprecise data [Subrahmanian & Tripathi 98].

Some of the areas mentioned allow for or even require the inclusion of special domain
knowledge to obtain suitable results. Other tasks are too general to find special domain
knowledge [Smeulders & Worring+ 00]. To retrieve general image data from an unrestricted
image database no special knowledge can be applied, but to retrieve similar faces it is possible
and recommendable to include domain-knowledge.

In this work a focus is set on features for image retrieval. That is, we investigate the
development of representations that allow searching for images similar to a given image. These
features also open up new perspectives in other fields. The features investigated here are used
for the tasks of classification and for clustering images into visually similar groups. Many
features that were used in image retrieval before are exemplified and compared.

The main contributions of this work are quantifieable examinations of a wide variety of
different features and different distance measures and a method to compare different content-
based image retrieval systems. The method is an extension of the method proposed in
[Müller & Müller+ 01]. We implemented a system using the features and distance measures
examined for classification and a system to cluster images according to their visual appear-
ance. To achieve these goals, a flexible and easily extensible content-based image retrieval
system was developed as well as a program to cluster images.

The remainder of this document is organized as follows: Chapter 2 presents the tasks
investigated and introduces the underlying principles. Chapter 3 gives a survey of image
retrieval techniques and systems available to give an idea of what has already been achieved
in this field and to present the methods used. In Chapter 4 we introduce different features
tested in the context of this work. The features are the first step towards a definition of
similarity. We present the preprocessing that is applied to the images to make it possible
to compare them. Chapter 5 introduces a variety of distance measures to compare features.
Together, the two Chapters define different ways to measure similarity. In Chapter 6 we
present the applications built on top of the features and the distance measures. Chapter 7
presents the databases used to test the applications. These databases are mainly used for
image retrieval, but also some new and interesting results for classification and clustering
have been achieved. Chapter 8 presents an approach to evaluate the performance of image
retrieval systems and clustering algorithms. Results for the three applications are given. For
the image retrieval and clustering task the results are based on the proposed measures and
for the classification task error rates are given. Finally, we conclude this work in Chapter 9
and propose further research.
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Chapter 2

Basic principles

This chapter introduces the fundamentals for the tasks investigated in this work, gives a
broad overview on the methods used, and presents some notations used in the remainder of
this document.

2.1 Basic Principles for Image Retrieval

Image retrieval is the task of searching for images from an image database. The query to the
database can be of various types as depicted in Figure 2.1.

Query-by-text: The user gives a textual description of the image he is looking for.

Query-by-sketch: The user provides a sketch of the image she is looking for.

Query-by-example: The user gives an example image similar to the one he is looking for.

In this work we focus on the query-by-example approach. Formally, query-by-example can
be defined as follows:

Let B be the image database with B := {Xn | n = 1 . . . N} where Xn is an image
represented by a set of features: Xn := {Xnm | m = 1 . . .M}. Because a query Q is also an
image, we have Q := {Qm | m = 1 . . .M}. To query the database, a dissimilarity measure
D(Q,Xn) is calculated for each n as

D(Q,Xn) :=
M∑

m=1

wm · dm(Qm, Xnm) for n = 1 . . . N.

From these D(Q,Xn), scores S(Q,Xn) = e−D(Q,Xn) are calculated and the image Xn with
n = argmaxn′{S(Q,Xn′)} is returned. Here, dm is a distance function or dissimilarity measure
and wm ∈ R is a weight. For each dm,

∑N
n=1 dm(Qm, Xnm) = 1 holds.

By adjusting the weights wm it is possible to emphasize properties of different features.
For example to search for an image of a sunset the colors in the image might be very important,
but to search for images of zebras texture is a very important feature.

In image retrieval an interaction with the user is given in most cases and this interaction
allows the user to control the search and maybe help to come to good results faster. One
widely used approach in information retrieval is relevance feedback. That is, after an initial
search the user is presented with the set of results. Naturally, some of the results match

3



databasequery result

”dinosaur”
text query:

Figure 2.1: Content-based image retrieval.

the query and some do not. Now the user marks good results as relevant and bad results as
irrelevant.

It has been shown that relevance feedback is extremely useful in information retrieval tasks
and some good results have been achieved in image retrieval as well [Müller & Müller+]. We
have to distinguish between two different types of relevance feedback: just positive relevance
feedback or positive and negative relevance feedback. Negative relevance feedback can improve
the results strongly, but may lead to bad results if too much negative feedback is given.

Formally, feedback can be seen as follows: Let Q+ = {Q+
1 , . . . , Q+

N+} be the set of positive
query images and Q− = {Q−

1 , . . . , Q−
N−} be the set of negative query images. Then, for each

of the positive and for each of the negative query images we calculate the scores for each of
the database images and calculate

S(Q+, Q−, Xn) =
N+∑
n′=1

S(Q+
n′ , Xn) +

N−∑
n′=1

(
1− S(Q−

n′ , Xn)
)

for each of the database images. Finally, the database images with highest score are returned.
When using relevance feedback it is important not to use too many negative examples

since this might cause problems [Müller & Müller+]: Selecting too many negative examples
can inhibit important features from positive examples to be taken into account.

2.2 Basic Principles for Image Clustering

Another task in the context of searching pictures arises from the following situation: Many
image databases index the images by text which can be found in the context of the image

4



or has been created manually to annotate the image. In this case image retrieval is reduced
to text retrieval. Probably the best established example for this method is the Google image
search. This image search engine crawls the web, saves thumbnails of the images found, and
indexes them using the text from their context, e.g. captions or surrounding texts. Searching
for an image by text confronts the user with a new problem: many words are ambiguous and
searching for them results in different types of images. Searching with Google image search for
the word “cookie” results in at least three different types of images: images of edible cookies,
screenshots of programs dealing with cookies in the context of the Internet, and images not
concerned with cookies at all. Even when searching for words with less ambiguity nearly
always two groups of images are returned: one meeting the requirements and an unsuitable
one. To solve this problem we propose to take the results obtained by the textual retrieval
method and regroup them using methods from computer vision to present a more conveniently
ordered set of results to the user. That is, the images returned are reordered to form groups
of visually similar images. An application reordering its input images in such a manner is
described in Chapter 6.2.

The idea of grouping data into clusters is not a new one, but has been a research topic
for a long time in different contexts. A detailed overview can be found in [Jain & Dubes 88].

To describe this situation more precisely, we give the following formal definition: Let A be
a set of observations to be clustered: A = {Xn | n = 1 . . . N}. This data is to be partitioned
into a set of clusters U = {uc | c = 1 . . . C} such that uc = {Xn′ | n′ = 1 . . . N ′

c} with
uc ∩ uc′ = ∅ for all c 6= c′ and

⋃C
c=1 uc = A. This partitioning should have the property that

only similar observations are in each cluster uc. Here, similar means that a given distance
measure d(Xn, X ′

n) is small for observations Xn and X ′
n from the same cluster but large for

observations from different clusters.
To meet these requirements, many algorithms have been proposed. In this work two

different algorithms are used. The k-means clustering is probably the simplest cluster algo-
rithm based on the squared error criterion. The LBG-Clustering-Algorithm can be seen as
an extension of the k-means algorithm.

2.2.1 k-Means Clustering

The k-means algorithm is a very popular method to partition data. Its objective is to find C
mean vectors µ1, . . . , µC , one for each cluster for a given C. The basic idea of this iterative
clustering algorithm is to start with an initial randomly chosen partition and assign patterns
to the clusters such that the squared error

e2 =
C∑

c=1

N ′
c∑

n=1

d(X(c)
n , µc)2

is reduced, where X
(c)
n is the n-th pattern belonging to the c-th cluster, µc is the mean vector

for the c-th cluster, and d is a distance function comparing images.The k-means clustering
algorithm works as follows:

1. Select an initial partition with C clusters.

2. Generate a new partitioning by assigning each pattern Xn to its closest cluster center µc.
That is, the cluster center µc with c = argminC

c′=1 d(Xn, µ′c) where d is a dissimilarity
measure.

5
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3. Compute new cluster centers µ1, . . . , µC as the centroids of the clusters.

4. Repeat step 2 and 3 until a stopping criterion is reached.

In step 1 the initial partition can be formed by first specifying a set of C seed points. This
initial partition could be the first C points X1, . . . , XC ∈ A or uniformly distributed points
in the pattern space. In step 2 the distances between each of the observations and each of
the cluster centers is calculated and then for each point the nearest cluster center is chosen.
In step 3 the center µc for each cluster is reestimated by determining the mean of the cluster
members. The second and the third step are repeated until a convergence criterion is met.

The k-means algorithm is easily implemented and has a time complexity of O(nC) for
each iteration. A major drawback with this algorithm is that it is sensitive to the selection
of the initial partition and may converge to a local minimum of the criterion function.

2.2.2 LBG-Clustering

The LBG-clustering algorithm has been proposed by [Linde & Buzo+ 80] and can be seen as
an extension of the fuzzy k-means algorithm. Initially, the data is described by one Gaussian.
Then this density is iteratively split until a criterion is reached. This criterion might be e.g.
“the variance is below a certain threshold” or “there are less than a certain number of observa-
tions in a cluster”. After each split, the densities are reestimated for several iterations similar
to the k-means algorithm. Instead of the fuzzy memberships we use maximum approximation
for the cluster memberships. This clustering algorithm works as follows:

1. Estimate the initial Gaussian density.

2. Split each density into two parts if it fulfills some split criterion.

3. Generate a new partitioning by assigning each pattern Xn to its closest cluster center
µc. That is, the cluster center µc with c = argminc′ d(Xn, µ′c) where d is a dissimilarity
measure.

4. Compute new cluster centers µ1, . . . , µC as the centroids of the clusters.

5. Repeat step 3 and 4 until an optimum value for the error criterion is reached.

6. Repeat from step 2 until some criterion or the maximum number of splits is reached.

In step 1 the mean µ and the variance σ2 of the data is estimated (cp. Figure 2.2(a)).
In step 2 each density meeting a criterion is split into two densities (cp. Figure 2.2 (b)).
Several split criterions are possible: split all clusters, split only the cluster with the highest
number of members, or split only the cluster with the highest variance. In practice splitting
all clusters has proven to work best for most of the cases. Splitting can be done in various
manners: Disturbing the mean by a constant value µ 7→ {µ′ = µ− ε, µ′′ = µ + ε}, disturbing
the mean by multiples of the mean itself µ 7→ {µ′ = µ− εµ, µ′′ = µ + εµ}, disturbing the
mean by the variance µ 7→

{
µ′ = µ− εσ2, µ′′ = µ + εσ2

}
. These methods have shown not to

work for histograms since histograms are normalized and these methods break the normal-
ization. Thus, for histograms we propose to split the means by addition and subtraction:
µ 7→

{
µ′ = µ

(
+
−
)
εµ, µ′′ = µ

(−
+

)
εµ
}

. The sign of the disturbance factor is changed after half
of the entries of µ. That is, µ has D entries, and µd is the d-th entry: µ′d = µd + cµ for
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(a) step 1, initial
Gaussian

µ
+ε
−ε

(b) step 2, split
the mean µ by ε

µ1

µ2

(c) steps 3-5,
reestimation

(d) result

Figure 2.2: Linde Buzo Gray clustering.

d = 1, . . . bD2 c and µ′d = µd − cµ for bD2 c + 1, . . . , D. The variance σ is just copied in the
split σ 7→ {σ′, σ′′}. In step 3 the distances between each of the observations and each of
the cluster centers is calculated and then for each point the nearest cluster center is chosen
(cp. Figure 2.2 (c)). For the calculation of the distances the variances are taken into account.
After this step clusters with less members than a certain threshold are removed. In step 4 the
center µκ for each cluster is reestimated by determination of the mean of the cluster members
(cp. Figure 2.2 (d)). Steps 3 and 4 are repeated until a convergence criterion is met. These
two steps are exactly the same as in the k-means algorithm. When the criterion is met it is
decided whether the clusters are split again. If not, the algorithm terminates.

A main benefit here is that the number of clusters is found automatically and is not
required to be given by the user as in the k-means algorithm. Experience shows that this
algorithm often yields better partitions than the simple k-means algorithm.

2.3 Basic Principles for Classification

The task of image classification is to assign class labels to images. Classification is needed for
optical character recognition and for face recognition for example. Usually a large amount
of training data is available and the classification process is based on this training data. A
classification system assigns a class label k ∈ {1, . . . ,K} to an observation. To classify an
image X a decision rule r is applied:

r : RD 7→ {1, . . . ,K}, r(X) = k

For this decision rule, the image X is represented by features. One possibility is to use the
pixel values of the image directly as features. Other possibilities are explained in Chapter 4.

One possibility to define the decision rule r is to determine the class for every possible
observation and store it, thus converting the classification problem into a search problem.
This approach is usually infeasible since the amount of possible observations is simply too
large. Consider 16 × 16 images where each pixel can have a gray value from the range 0 to
255. Then, 25616×16 different observations are possible.

A more feasible possibility is to use a set of labeled training observations {X1, . . . , XN}
with labels {k1, . . . , kN} to define the decision rule by a discriminant function g(X, k):
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r(X) = argmax
k′
{g(X, k′)}.

In this work the classification is always performed using the nearest neighbor (NN) rule.
That is, an image is classified to be from the same class as the closest image from the training
corpus according to a given distance measure. To realize this classification rule the discrimi-
nant function gNN is chosen as:

gNN(X, k) =

1, if k = argmin
k′

min
n=1,...,Nk′

{D(X, Xk′n)}

0, else

For many applications it is recommendable to use other discriminant functions as several
works show [Schölkopf 97, Keysers & Och+ 02, Dahmen & Hektor+ 00, Ney 99] but in this
work we only consider the nearest neighbor rule as there is a very close connection between
classification using this rule and image retrieval as explained in Chapter 8.1.
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2.4 Notation

This section is a reference for the symbols used in the context of this work.

Table 2.1: Symbols used in this work.

Symbol Description
B database of N images B={Xn | n = 1 . . . N}
X image represented by M features X = {Xm | m = 1 . . .M}

N0 ×N1 image with gray value X(n0, n1) at position X(n0, n1)
Q query image represented by M features Q = {Qm | m = 1 . . .M}
d (·, ·) dissimilarity function comparing two features

A set of N images to be clustered A = {Xn | n = 1 . . . N}
U partitioning of A into C clusters U = {uc | c = 1 . . . C}
uc cluster with N ′

c members uc = {X(c)
n | n = 1 . . . N ′

c}
ε disturbance factor for density splits

K number of classes
kn class of image Xn

r decision rule
g discriminant function

H histogram with M bins
S feature space of the histogram, partitioned into M regions Sm

Sm region belonging to the m-th bin
Hm empirical probability for any point falling into Sm

Vm value belonging to the m-th bin, e.g. center of Sm

qm membership function of the m-th bin

F (X) feature calculated from the image X invariant with respect to
transformation g from a group of transformations G

f(X) : X 7→ R function mapping images to single values
X (u0, u1) 2-D Fourier transform of the image X(n0, n1)
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Chapter 3

State of the Art in
Content-Based Image Retrieval

In content-based image retrieval many disciplines are combined. On the one hand there are
image recognition and pattern analysis which try to describe the images in a way that makes
it possible to distinguish between similar and dissimilar images. On the other hand there is
the database part which tries to store the images and features to allow for efficient access to
the data. This work is only concerned with the first part. The database and indexing part,
which is a research area of its own, is not considered here. The remainder of this chapter
presents an overview on the systems and methods available for content-based image retrieval
to give an idea of what has already been achieved in this field. Finally, we give references to
classification systems and works dealing with the clustering of visually similar images. Since
only some of the works presented here give quantitative, comparable results, results are not
presented here. Instead, results from these works are given in Chapter 8 in comparison to the
results obtained in the context of this work.

3.1 Related Work in Content-Based Image Retrieval

[Smeulders & Worring+ 00, Rui & Huang+ 99, Fend & Siu+ 03] give overviews on the tech-
nical achievements in the field of content-based image retrieval. They review the processing
applied to images for retrieval and discuss features extracted from images for searching. They
also review different distance and similarity measures for different types of features. Finally,
they give summaries about possible system architectures and the database techniques used.
Also these surveys list image retrieval systems available and introduce the methods used.

One of the first content based image retrieval systems available was the QBIC system
(Query By Image Content) from IBM [Faloutsos & Barber+ 94]. The QBIC system uses
three types of features: color histograms to describe the color distribution, a moment based
shape feature to describe shapes, and a texture descriptor based on contrast, coarseness, and
directionality to account for textures. This system also uses database technology to handle
the high dimensionality of the data. The system is available online1.

A very popular content-based image retrieval system is the BlobWorld system, which
has been developed at the University of California, Berkeley. This system is presented in

1http://wwwqbic.almaden.ibm.com
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[Carson & Thomas+ 99, Carson & Belongie+ 02]. The system uses image features which are
extracted using segmentation of images. This segmentation is done using an EM-style algo-
rithm clustering the image pixels using color, texture, and position information. To query the
database the user selects a region from an image and the system returns images containing
similar regions. BlobWorld is available online2.

A system which has strongly influenced this work is the SIMBA(Search IMages By Ap-
pearance) system [Siggelkow 02, Siggelkow & Schael+ 01, Siggelkow & Burkhardt 97]. This
system uses features invariant against rotation and translation (cp. Chapter 4.3) accounting
mainly for color and texture. By a weighted combination the user can adapt the similarity
measures according to his needs. SIMBA is available online3.

[Squire & Müller+ 99] present an approach for content-based image retrieval which is ori-
ented towards the methods used in textual information retrieval. They propose a very high
dimensional space (dimensionality: 80 000) of binary features and an inverted file to allow
for efficient access. The features they use are a color histogram in HSV space and a set of
Gabor coefficients. A weighting of different features is done depending on the number of oc-
currences in images. This approach is realized in the image retrieval system VIPER (Visual
Information Processing for Enhanced Retrieval)4 and it is freely available5 under GNU Public
License (GPL) as GIFT (GNU Image Finding Tool). Since it is freely available this system is
also used in other institutions and is currently extended to a medical image retrieval system.

The CIRES system [Iqbal & Aggarwal 02] uses a color histogram with 15 bins as color
features, Gabor features as texture representation. Additionally image structures like line
crossings and line junctions are extracted from the images. These structures enhances the
retrieval performance because structures of this type usually are found in man-made objects.
They also show that this approach leads to a performance increase for images containing
man-made objects. CIRES is available online6.

[Wang & Li+ 01] propose another approach to increase image retrieval performance. The
authors claim that preclassification improves retrieval results. They propose to preclassify
images into semantic categories like graph/photograph, textured/non-textured which are rel-
atively simple to classify. After this classification they return images belonging to the same
semantic categories only. Apart from this, region-based features similar to the approach in
BlobWorld are used, but the region descriptions of the images are matched automatically.
This system is available online7.

Efforts in the area of image retrieval are also made for medical applications. The IRMA
(Image Retrieval in Medical Applications) project [Lehmann & Güld+ 03] is a cooperation
of the Department of Diagnostic Radiology, the Department of Medical Informatics, and the
Lehrstuhl für Informatik VI of the Aachen University of Technology (RWTH Aachen). Aim
of the project is the development and implementation of high-level methods for content based
image retrieval with prototypical application to medico-diagnostic tasks on a radiologic image
archive8.

Other image retrieval systems are available, but it is beyond the scope of this work to

2http://elib.cs.berkeley.edu/photos/blobworld/
3http://simba.informatik.uni-freiburg.de
4http://viper.unige.ch
5http://www.gnu.org/software/gift/gift.html
6http://amazon.ece.utexas.edu/ qasim/research.htm
7http://wang.ist.psu.edu/
8http://www.irma-project.org
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present them all. They mainly differ in the features and the search structures they use. In
Chapter 4 we present a selection of features and many of them have been used for image
retrieval before.

A common problem in image retrieval is the performance evaluation. It is difficult to
compare the available systems, because no common performance measure for image retrieval is
established and even constructing a performance measure is difficult since the success or failure
of an image query strongly depends on the requirements of the user. In Chapter 8 we focus
on this problem and introduce and extend an approach proposed by [Müller & Müller+ 01].
In this context a serious problem is the nonexistence of a standard database for comparison
of different image retrieval systems. This problem is not directly addressed here but results
are presented for a wide variety of different databases.

3.2 Related Work in Clustering of Images

In [Iyengar & Lippman 98] the authors propose to use clustering techniques to allow for ef-
ficient access to large image databases. More efficient access is important, since due to the
size of large image databases, querying becomes expensive even if the images are represented
in a compact manner. With clustering, the task of retrieval is decomposed into a two stage
process. In the first step an appropriate cluster is selected and in the second step the best
matches from this cluster are returned. They compare a clustering technique which uses
relative entropy to techniques using the Euclidean norm.

[Käster & Wendt+ 03] propose to use image clustering techniques to allow for faster search-
ing in image databases. They compare different clustering techniques to find out which suits
the task of clustering images best.

In [Saux & Boujemaa 02a, Saux & Boujemaa 02b] the authors propose to use image clus-
tering to give a good overview of an image database to help a user find a sought image faster.
To cluster this images, they estimate the distribution of image categories and search the best
representative for each cluster. They represent images by a high-dimensional feature vector
and propose a new clustering algorithm which they compare to other clustering techniques.

[Berkhin 02, Jain & Murty+ 99, Jain & Dubes 88] give general information about cluster-
ing of data and the evaluation of results. In [Linde & Buzo+ 80] a new clustering algorithm
based on the EM algorithm is proposed and a method to avoid the problem of finding an initial
partition by iterative splitting of an initial Gaussian describing all data points is introduced.

[Starik & Selding+ 03] describe a method to cluster images into meaningful classes using
a segmentation technique to compare the images. The segmentation is done using centroid
models common to all images in the set and for clustering the information bottleneck algorithm
is used to cluster the images based on the result of the segmentation.

[Barnard & Forsyth 01, Barnard & Duygulu+ 01] present a method to combine the advan-
tages of clustering images based on image features with the advantages of clustering images
based on textual description. Using this combination improves the results strongly as was
empirically tested in this works.

In [Deselaers & Keysers+ 03a] preliminary results of this work are presented. A combi-
nation of methods from computer vision and data mining is proposed to improve the user-
friendliness of text-based image search engines.
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3.3 Related Work in Object-Recognition and
Classification of Images

In this section some approaches to object recognition in images are presented. At the
moment it is not yet possible to retrieve images from a database with arbitrary scenes
based on the objects contained in the images, but this is an objective for future research
[Smeulders & Worring+ 00]. Here an overview of approaches for object recognition with a fo-
cus on object recognition in complex scenes like they usually can be found in general images
is given.

A broad overview about the methods used in pattern analysis and classification is given
in [Duda & Hart+ 01]. Since object recognition is a special case of pattern recognition this
book gives a good introduction into this topic.

In [Fergus & Perona+ 03] the authors present a method to learn and recognize object class
models from unlabeled and unsegmented scenes. Objects are modeled as flexible constellations
of parts. For all aspects of the objects a probabilistic representation is used.

[Deselaers & Keysers+ 03b] propose to use local representations to recognize multiple ob-
jects in one scene. Local representations, as proposed, convey some properties that are highly
important for the task of multi object recognition: They are inherently invariant with respect
to translations and they can cope well with partial occlusions. [Kölsch 03] describes and in-
vestigates variations to the methods of local representations which are of interest for these
tasks.

In [Keysers & Motter+ 03] the authors propose a holistic statistical model for automatic
object training and recognition in complex scenes. That is, no local decisions about object
boundaries, segmentation, or object transformations are taken. Instead, all pixels in the given
scene are explained using an appearance based approach. Details about the statistical model
as applied to medical images can be found in [Keysers & Dahmen+ 03].

In [Frey & Jojic 03] a statistical model for automatic training of invariant object models
is introduced. The authors propose the use of transformed mixtures of Gaussians to learn
representatives of transformed objects from unsegmented data.

[Keysers 00] describes approaches to invariant object recognition. Translations considered
are mainly affine transformations. [Gollan 03] considers a broader class of, especially non-
linear, transformations for object recognition. Both approaches obtain state of the art results
in optical character recognition and radiograph classification.

In [Reinhold & Paulus+ 01] the authors present an appearance-based approach for the
localization and classification of 2-D objects situated in heterogeneous background. Local
features are derived from wavelet multiresolution analysis by statistical density functions. In
addition to the object model, the background is modelled by a uniform distribution. That is,
one density function is given to describe all possible backgrounds. It is experimentally shown
that this model is well suited for the addressed recognition task.

[Obdrzalek & Matas 03] describe an approach to invariant object recognition using local
representations normalized with respect to affine transformations. The local representations
are taken from regions where certain shapes are detected and the subimages are normalized
with respect to certain transformations. Discrete cosine transform is applied to the local
representations to reduce the memory usage.

[Duygulu & Barnard+ 02] use the same features as the image retrieval system BlobWorld
and proposes to use methods from machine translation for object recognition. For the transla-
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tion, the image features are considered as source language and the image description as target
language.

[Barnard & Forsyth 01, Barnard & Duygulu+ 01, Barnard & Duygulu+ 02] present a sta-
tistical method to learn the relationship between image features and textual annotations.
The annotations are used for minimally supervised object training from an annotated image
database and full automatic object recognition.
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Chapter 4

Features for
Content-Based Image Retrieval

The basic idea of content-based image retrieval is not to rely on textual descriptions of image
content. Instead, a set of features is used that allows the user to find images that are visually
similar to a presented query image. Here “similar” may mean different things. A radiologist,
for example, may have different criteria of similarity than a journalist. Obviously, these
different needs cannot be fulfilled by exactly the same method. To allow for these different
demands different descriptions of the images are needed. Different features may account for
different properties of images. Some works divide the used features into different groups, e.g.
color features, texture features, and shape features. Most of the features are indeed members
of two or more of these groups. Therefore, we do not distinguish between these groups of
features a priori but instead try to show which features have similar properties using an
empirical correlation analysis.

In the remainder of this chapter a variety of features describing different properties of
images is described which allow the user to search for images taking into account these
different properties is given.

4.1 Image Features

The most direct approach to query for images is to compare the images directly. That is, the
pixel values of the image itself or the pixel values of a scaled version are compared directly to
the corresponding values of other images. For many applications this approach is not feasible
as it is not clear which pixels from the one image correspond to which pixels in the other
image. In optical character recognition this method is suitable when the symbols are already
segmented since a letter to be recognized will probably be similar to another observation of
the same letter when the letters are of equal size and contained at the same position in the
image. Research about this and improved methods for finding possible pixel alignments are
presented in [Gollan 03].

In addition to taking the pixel values themselves several extensions are possible. Filters
and transformations can be applied to the image to give a more compact representation or to
account for certain properties of the image, e.g. Sobel filters are applied to emphasize edges
and discrete cosine transformation or PCA transformation are applied to give a more compact
representation.
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4.2 Color Histograms

A histogram is a way to approximate the distribution of a random variable. It is also a simple
approach to give a description of an estimated density.

The feature space S is partitioned into M regions Sm,m = 1, . . . ,M . Usually these
regions form a regularly spaced grid, i.e. the regions Sm are hypercubes of the same size, but
this is not a requirement. Formally:

Sm ⊂ S with
M⋃

m=1

Sm = S (4.1)

and Sm ∩ Sm′
= ∅ ∀m 6= m′ (4.2)

The empirical probability for data points falling into one of these regions is determined
by counting. Let Km be the number of data points in region Sm from a total of N points,
then the empirical probability Hm for any data point x to be from this region is given by
Hm = P (x ∈ Sm) = Km

N .
To create a color histogram the color space has to be divided into regions. For example,

the widely used 24 bit RGB color space contains 224 regions. A histogram containing as
many histogram bins would be too large to be dealt with efficiently. To reduce the amount
of memory needed the feature space is quantized. Here, it is required to find a good trade-
off between loss of precision and memory requirement. For gray images, the situation is
somewhat better because gray images usually contain 256 different gray levels only. 256 bins
are still a manageable amount of data. After partitioning the feature space, for each region
the number of pixels from this region is counted to calculate the empirical probabilities.

A problem with histograms is the discontinuity [Siggelkow 02]. That is, slightly changing
the image might change the bin assignments and thus the resulting histogram completely.
To overcome this problem fuzzy histograms can be used. The goal of fuzzy histograms is
to remove the discontinuous bin assignment of the traditional histogram. The membership
function qm(x) for bin m of a discontinuous histogram is defined as

qm(x) =

+∆∫
−∆

g(x− Vm + z)dz

where each bin starts at position Vm − ∆ and ends at position Vm + ∆ with g(x) = δ(x)
where δ(x) is the Kronecker Delta.

That is, only one of the M membership functions is not zero for each point x. The
assignment is discontinuous at the boundaries of the membership functions and due to this
discontinuouity very small variations can cause jumps in the assignments.

[Siggelkow 02] proposes a modified histogram with a continuous bin assignment function.
In Figure 4.1(a) a continuous bin-assignment function with

g(x) =

{
1

∆2 (x + ∆) for x < 0
− 1

∆2 (x−∆) for x >= 0

is shown. In Figure 4.1(b) the standard discontinuous bin assignment function is shown
Nearly the same effect can be achieved by creating the normal discontinuous histogram first
and then smoothing it, for example by convolution with a Gauss filter.
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Figure 4.1: Examples of bin-assignment functions.

4.3 Invariant Features

An invariant feature is a feature calculated from an image that is invariant with respect to
certain transformations, i.e. it does not change when these transformations are applied to
the image. The transformations considered here are mainly translation, rotation, and scaling.
In the remainder of this section we consider gray images only, but the methods are easily
extensible to color images.

Formally, an image X is an N0×N1 matrix of values X (n0, n1), that can e.g. be interpreted
as gray values. Considering affine transformations that transform a coordinate system into
another coordinate system such that the point (n0, n1) in the transformed coordinate system
is (n′0, n

′
1) in the original coordinate system as(

n′0
n′1

)
=
(

a11 a12

a21 a22

)(
n0

n1

)
+
(

t0
t1

)
,

an image X can be transformed into another image X ′ with X ′(n0, n1) = X(n′0, n
′
1). Let g

be the transformation with X ′ = gX then we are looking for a feature F (X) invariant with
respect to the transformation g, that is, F (X) = F (gX).

The set of images which can be obtained from one image by any valid transformation
g is called an equivalence class and all images from one equivalence class should yield the
same invariant feature F (X). Details about further requirements for invariant features can
be found in [Siggelkow 02].

To construct invariant features, three approaches are available:

Normalization. The goal of image normalization is to find a distinctive representation for
any equivalence class of images. That is, each image X from an equivalence class
is mapped to the same representation. For example, normalization with respect to
translation on gray value images can be achieved easily by calculating the center of
gravity of the gray values of the image and translating this center of gravity to the
image center.
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Differential approach. Invariants may be obtained by solving partial differential equations.
Various types of differential invariants have been used for shape-descriptors e.g. curva-
ture and torsion [Brill & Barrett+ 92]. A small set of differential invariants may contain
all the essential information about the curve. This approach is theoretically interesting,
but segmentation is needed since the contours of the segments are processed. Segmenta-
tion is usually not possible in common image retrieval as complete image understanding
is needed for a perfect segmentation. Also, in practice the differential equations involved
become complex and hard to solve, though using a priori knowledge can help to reduce
the number of necessary partial derivatives [Squire & Caelli 00].

Integral approach. The construction of invariant features is possible by integration over
the transformation group [Schulz-Mirbach 95]. That is, all possible transformed images
are considered and an integral over all these images is carried out. This approach is
described in more detail in the following sections.

4.4 Invariant Features by Integration

To create features invariant to certain transformations an integral over all transformed images
is calculated [Siggelkow 02]. That is, all possible transformations of the image are considered,
to each of these images a certain function is applied, and the integral over these functions is
calculated. This integral is invariant with respect to the transformations considered.

Let X be a gray value image, X (n0, n1) the gray value at position (n0, n1) and let g ∈ G be
a transformation from the group of transformations G. Then gX is the image X transformed
by g such that X(n′0, n

′
1) = gX(n0, n1). Let f be a function from an image to a real number:

f : X 7→ R, then F (X) with

F (X) =
∫

g∈G

f (gX) dg

is invariant with respect to any transformation from G.
For example to create a translation invariant feature for an image X of size N0 ×N1 the

following can be calculated:

F (X) =
1

N0N1

N0∫
t0=1

N1∫
t1=1

f (gn0,n1X) dt1dt0

This method is easily extensible to affine transformations. An affine transformation trans-
forms the coordinate system of a point (n0, n1) by(

n′0
n′1

)
=
(

a11 a12

a21 a22

)(
n0

n1

)
+
(

t0
t1

)
In the following consider the group of Euclidean motion is considered, that is the group

of rotations and translations Gr,t and the group of rotation, scaling, and translation Gr,s,t.
A transformation rotating the image by ϕ and translating it by (t0, t1) can be expressed

as affine transformation as follows. The point (n0, n1) is transformed to the point (n′0, n
′
1)

with (
n′0
n′1

)
=
(

cos ϕ − sinϕ
sinϕ cos ϕ

)(
n0

n1

)
+
(

t0
t1

)
.
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To obtain a feature invariant against these translations integration over t0, t1 and ϕ is neces-
sary. In practice, the parameters are discretized

F (X) =
1

N0N1R

N0∑
t0=1

N1∑
t1=1

R∑
r=1

f
(
gt0,t1, 2πr

R
X
)

and a function f is selected. Choosing e.g. f (X) = X (1, 0) ·X (0, 2) leads to the following
expression which is evaluated:

F (X) =
1

N0N1R

N0∑
t0=1

N1∑
t1=1

R∑
r=1

X

(
cos

2πr

R
+ t0, sin

2πr

R
+ t1

)
·X
(
−2 sin

2πr

R
+ t0, 2 cos

2πr

R
+ t1

)
The same applies for extension to scaling. Here, the transformation can be expressed as

the coordinate transformation given by(
n′0
n′1

)
= s

(
cos ϕ − sinϕ
sinϕ cos ϕ

)(
n0

n1

)
+
(

t0
t1

)
where s is the scaling factor. Choosing f as above f (X) = X (1, 0) ·X (0, 2) and selecting a
set S = {s1, . . . , sn} of scale factors this leads to

F (X) =
1

N0N1R|S|

N0∑
t0=1

N1∑
t1=1

R∑
r=1

∑
s∈S

X

(
s cos

2πr

R
+ t0, s sin

2πr

R
+ t1

)
·X
(
−2s sin

2πr

R
+ t0, 2s cos

2πr

R
+ t1

)
For the calculation of perfectly scale invariant features it is necessary to consider all

possible scalings of an image. That is, the image has to be scaled from the size where the
function’s support is larger than the image (here: image size 2×2 pixels) up to the size where
the function f(X) is completely contained in one pixel (here: pixel size 2 × 2 pixels). This
requirement leads to a large amount of scalings to be considered.

In many applications it is desired to consider features not completely invariant to rotation
but only invariant to rotation to a certain degree. In optical character recognition rotation
invariance is a problem since using completely rotation invariant features makes e.g. “6” and
“9” indistinguishable which is not wanted. Using the approach presented here, it is not
possible to create features invariant to a certain degree of rotation because considering some
rotations only does not lead to the same features for rotated images. Nevertheless we tried
to obtain partially rotation invariant features by integrating over sectors of a circle instead of
integrating over complete circles and present the results of these experiments in Chapter 8.

For the calculation of these features it is not necessary to really transform the image using
all the transformations from the transformation groups, but it is possible to calculate the
features more directly. This fact can be seen from the equations above and the calculation
strategy as depicted in Figure 4.2. Instead of transforming the image using all transformations,
the inverse transformations are applied to the function f and then this function is applied to
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F (X)
∑ · 1

|G|

Figure 4.2: Calculation strategy for invariant integration.

the untransformed image. For the case of translation and rotation the sum over the rotation
angle r is calculated for each point of the image and then these sums are summed up (cp.
Figure 4.2).

To speed up this process further, it is possible to approximate the exact invariant feature
using Monte Carlo integration. This method allows to get an invariant feature with a given
precision at a very high probability. Instead of integrating over all positions of the image
the integration is carried out over a fixed number of positions and thus it is possible to
create an algorithm which can extract an invariant feature in a fixed time. Details about this
approximation method can be found in [Siggelkow 02, Siggelkow & Schael 99].

Now we come to the issue of choosing an appropriate f(X). f(X) is a function f : X 7→ R.
This function can be of various types. Monomial and relational functions are considered. The
first kind of functions to be considered are monomials:

f(X) =
J∏

j=1

X(n(j)
0 , n

(j)
1 )

Using this type of functions it is possible to construct complete feature sets for finite trans-
formation groups [Siggelkow 02].

As a first example consider the trivial monomial f(X) = X(0, 0). Using this function to
obtain the invariant feature F (X) yields simply the mean gray value. For other monomials
we obtain average results of products calculated on certain constellations of pixels under all
possible rotations and translations. For monomials with small support the result is very sim-
ilar to the mean gray value. Using monomials of different support size allows us to construct
features capturing information of different resolutions from an image. In practice monomials
of the type

f(X) = J

√√√√ J∏
j=1

X(n(j)
0 , n

(j)
1 )
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Figure 4.3: The rel-function.

are used to not distort the range of the results and to keep the result within the same range
as the original image values. Since the monomial functions are very sensitive to illumination
changes another type of functions for the invariant features was proposed: Relational functions
[Schael 01] have been used for texture representation in the same framework of integrational
invariants. Features obtained using relational functions are robust to illumination changes in
contrast to features obtained using monomial kernels. The according function f(X) is defined
as

f(X) = rel
(
X
(
n

(1)
0 , n

(1)
1

)
−X

(
n

(2)
0 , n

(2)
1

))
with

rel(x) =


1 if x ≤ −c
1
2c(c− x) if − c < x ≤ c

0 if c < x

(cp. Figure 4.3)

The rel-operator maps the relations between the gray values of the pixel X
(
n

(1)
0 , n

(1)
1

)
and

the pixel X
(
n

(2)
0 , n

(2)
1

)
. In practice, we do not add up the resulting values for the different

rotations but create a 3-bin “fuzzy” histogram of these values. This histogram counts the
amount of pixels that are brighter, equal, and darker than the first pixel. The resulting
invariant feature is not completely invariant against changes of brightness but is still robust
to monotonic gray value transformations.

The approach of integration over the transformation group thus yields features invariant
against a given group of transformations and is easily extensible to other transformations.
A problem is that the invariant feature only consists of one value per gray value image
respectively three for an RGB image, and this is not rich enough to discriminate between
different images. To solve this problem, two approaches are available.

4.4.1 Invariant Feature Histograms

The first approach to solve the problem of insufficient data in the invariant feature is based
on the idea of replacing one or more of the integrals by histogramization. In fact, any commu-
tative operator preserves the invariance property and the sum and histogramization are only
practical examples. Thus it is possible to predetermine the dimensionality of the information
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Table 4.1: Monomials used for invariant feature vectors.

X(0, 0)
√

X(0, 0)X(0, 1) 3
√

X(0, 0)X(0, 1)X(0, 1)√
X(0, 0)X(0, 2) 3

√
X(0, 0)X(0, 1)X(0, 2)√

X(0, 0)X(0, 4) 3
√

X(0, 0)X(0, 1)X(0, 4)
...

...√
X(0, 0)X(0, 32) 3

√
X(0, 0)X(0, 1)X(0, 32)

3
√

X(0, 0)X(0, 2)X(0, 1)
...
3
√

X(0, 0)X(0, 2)X(0, 32)
...
3
√

X(0, 0)X(0, 32)X(0, 32)

gathered and the computational complexity remains unchanged. The histogram HF is given
by

HF (X) =
N0,N1

hist
t0=1,t1=1

1
R

R∑
r=1

f
(

gt0,t1, 2πr
R

X
)

Note that using the function f (X) = X (0, 0) results in a simple color histogram as described
in Section 4.2.

In practice, for RGB images we create 3-dimensional histograms with six, seven, or eight
splits in each dimension. This results in histograms of 216, 343, or 512 bins respectively. For
gray images histograms with 64, 128 or 256 bins are created.

4.4.2 Invariant Feature Vectors

Another approach to solve the problem of insufficient data in the invariant feature is to
calculate various different invariant features using different functions f . This approach results
in a vector V = (v1 . . . vN ) of invariant features with vn = Fn (X) and the fn are functions
from a set of functions {f | f : X 7→ R}.

The calculation of invariant feature vectors is computationally expensive. The complexity
is increased by factor N in comparison to the calculation of an invariant feature or invariant
feature histogram.

In practice we use vectors with 44 different monomial functions. The functions used are
listed in Table 4.1. Thus 44 dimensional vectors for gray images and 132 dimensional vectors
for RGB images are obtained.

4.4.3 Invariant Fourier Mellin Features

It is well known that the amplitude spectrum of the Fourier transformation is invariant
against translation. Using this knowledge and log-polar coordinates it is possible to create
a feature invariant with respect to rotation, scaling, and translation [Reddy & Chatterji 96,
Dahmen & Hektor+ 00], of which a short overview is given here.

The discrete Fourier transformation X (u0, u1) of a 2D discrete image X (n0, n1) ∈ RN×N
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is defined as

X (u0, u1) =
1

N2

N∑
n0=1

N∑
n1=1

X (n0, n1) e−
2πi(u0n0+u1n1)

N

with i =
√
−1 and u0, u1 = 0, 1, . . . , N − 1.

Let f (n0, n1) be a function with the Fourier transform F (u0, u1), then:

• f ′ (n0, n1) = f
(
n0 − n

(0)
0 , n1 − n

(0)
1

)
⇒ F ′ (u0, u1) = F (u0, u1) · e

−2πi
“
n

(0)
0 u0+n

(0)
1 u1

”

• f ′ (n0, n1) = f (βn0, βn1)⇒ F ′ (u0, u1) = 1
β2F

(
u0
β , u1

β

)
• f ′ (n0, n1) = f (n0 cos α + n1 sinα,−n0 sinα + n1 cos α)

⇒ F ′ (u0, u1) = F (u0 cos α + u1 sinα,−u0 sinα + u1 cos α).

Using these 3 properties it is possible to derive the following characteristics of the am-
plitude spectrum A (u0, u1): It is invariant with respect to translation, inverse-variant with
respect to scaling and variant with respect to rotation. Thus, features based on the amplitude
spectrum of an image are translation invariant. By transforming the rectangular coordinates
(u0, u1) of A (u0, u1) to polar coordinates (r, θ) and using a logarithmic scale for the radial
axis, image scales and rotations become shifts in the log-polar representation Â of A. Thus the
amplitude spectrum of Â is invariant with respect to rotation, scaling and translation. From
the amplitude spectrum of Â we extract 15× 25 features considering the symmetry which is
in fact a low-pass filtering. That is, we take the values around the direct current such that
no symmetrical values are taken. Thus, a 375-dimensional feature vector is taken. For the
coordinate transformation from rectangular to log-polar coordinates a B-spline interpolation
is used.

The whole process is shown in Figure 4.4. Two images are Fourier transformed, then
converted to log-polar coordinates, and then again Fourier transformed. It can be seen that
the resulting features are identical as the differnce is 0 in all positions.

4.5 Gabor Features

Gabor filters are a well known technique for texture analysis and have been used in several
works [Park & Jin+ 02, Zhang & Wong+ 00, Iqbal & Aggarwal 99] before. In this work we
use the approach presented in [Palm & Keysers+ 00, Keysers 99] where the HSV color space
(hue, saturation, value) is used. Hue and saturation are represented as one complex value in
the images. Here a short overview of the proposed method is given.

For texture analysis, frequency elements, as obtained by Fourier transformations, are an
important part of an image but the simple Fourier transform discards all spatial information.
To retain spatial information, the windowed Fourier transform (WFT) is used and results
in a spatial/frequency representation of the image. For this purpose, the image X(n0, n1) is
multiplied by the window function w(n0, n1) and then the Fourier transform is applied:

X
(
n

(0)
0 , n

(0)
1 , u0, u1

)
=

∫ ∞

−∞
X (n0, n1) w

(
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(0)
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(0)
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)
e−2πi(u0n0+u1n1)dn0dn1
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0 +u1n
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e
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Figure 4.4: Creation of RST-invariant features: A rotation example. Note that
the image rotation becomes a vertical shift in the log-polar plane
[Dahmen & Hektor+ 00].

Here u0 and u1 are the horizontal and vertical frequencies respectively and (n(0)
0 , n

(0)
1 ) is the

position in the image where the frequencies are determined. The WFT is a convolution of
the image with the filter mu0,u1 . For texture analysis, spatial and frequency locations are
desired but with respect to the uncertainty principle of the Fourier transform a good trade off
between these two goals has to be found. The Gabor transformation uses a Gaussian function
as the optimally concentrated function in the spatial as well as in the frequency domain. Here,
non-isotropic Gaussians of the form

mf,ϕ (n0, n1) =
1

2πσ2λ
e
− 1

2σ2

„
n′20
λ2 +n′21

«
e2πifn′0

Mf,ϕ (u0, u1) = e−2π2σ2[(u′0−f)2λ2+u′21 ]

with the center frequency f =
√

u2
0 + u2

1 and the rotated coordinates (n′0, n
′
1) = (n0 +cos ϕ+

n1 sinϕ,−n0 sinϕ + n1 cos ϕ) are used. 1
λ is the aspect ratio.

Due to the convolution theorem the filter interpretation of the Gabor transform allows the
efficient computation of the Gabor coefficients Gf,ϕ(n0, n1) by multiplication of the Fourier
transformed image X (u0, u1) with the Fourier transform of the Gabor filter Mf,ϕ(u0, u1) and
application of the inverse Fourier transform:

Gf,ϕ(n0, n1) = FFT−1 {X (u0, u1) ·Mf,ϕ(u0, u1)}

Since the correlation of information between the spectral bands is not integrated in the
RGB color space it is proposed to use a special interpretation of the HSV color space.

A complex representation of the H and S color channel is used with b(n0, n1) = S(n0, n1) ·
eiH(n0,n1) and the V layer is used as gray value image. These two image planes are Gabor
transformed using a set of 25 Gabor filters accounting for different scales and directions. That
is, in total 50 Gabor transformations are done, 25 for the V color channel and 25 for the b
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(a) (b) (c) (d) (e) (f)

Figure 4.5: Example images for texture properties: a) high coarseness b) low coarse-
ness c) high contrast d) low contrast e) directed f) not directed. (Images
from [Graczyk 95])

color channel as a combination of the H and the S color channel. It is advantageous to use
the convolution theorem as given above, which allows to calculate the coefficients efficiently.

After this process 50 Gabor coefficients for each pixel have been extracted which is a huge
amount of data. To make this data manageable the 50 dimensional Gabor feature vector is
extracted for a limited set of pixels only. Those pixels with high local variance are selected
since we consider these pixels as important for the content of the image. This selection still
results in a large set of 50 dimensional vectors. Since it is not possible to create a histogram
of 50 dimensional data due to the high dimensionality, first a possibility to represent the 50
dimensional Gabor feature vectors more compactly is created.

To obtain this representation, first the set of 50 dimensional Gabor vectors is extracted
from all images from the database, then a partitioning of this set of Gabor feature vectors is
created with a fixed number of clusters using one of the clustering algorithms introduced in
Chapter 2.2. Finally, for each image a histogram from the cluster memberships of its Gabor
feature vectors is created. The clustering algorithms allow us to obtain a different number of
clusters and thus differently sized histograms.

Other approaches to use Gabor features for image retrieval work very similar to the
approaches for local features. Details about this are presented in Section 4.8.

4.6 Tamura Features

In [Tamura & Mori+ 78] the authors propose six texture features corresponding to human
visual perception: coarseness, contrast, directionality, line-likeness, regularity, and roughness.
They make experiments to test the significance of the features. They found the first three
features to be very important. That is, these correlate strongly with the human perception.
Examples to illustrate the meaning of these features are given in Figure 4.5. These three
features, coarseness, contrast, and directionality, are defined as follows:

Coarseness The coarseness gives information about the size of the texture elements. The
higher the coarseness value is, the rougher is the texture. If there are two different
textures, one macro texture of high coarseness and one micro texture of low coarseness,
the macro texture is considered. The essence of calculating the coarseness value is to use
operators of various sizes. A large operator is chosen when a coarse texture is present

27



even if there is a micro-texture and a small operator is chosen when micro texture is
present only. The coarseness measure is calculated as follows:

1. For every point (n0, n1) calculate the average over neighborhoods. The size of the
neighborhoods are powers of two, e.g.: 1× 1, 2× 2, 4× 4, . . . , 32× 32:

Ak (n0, n1) =
1

22k

22k∑
i=1

22k∑
j=1

X
(
n0 − 2k−1 + i, n1 − 2k−1 + j

)
2. For every point (n0, n1) calculate differences between the not overlapping neigh-

borhoods on opposite sides of the point in horizontal and vertical direction:

Eh
k (n0, n1) =

∣∣∣Ak

(
n0 + 2k−1, n1

)
−Ak

(
n0 − 2k−1, n1

)∣∣∣
and

Ev
k (n0, n1) =

∣∣∣Ak

(
n0, n1 + 2k−1

)
−Ak

(
n0, n1 − 2k−1

)∣∣∣
3. At each point (n0, n1) select the size leading to the highest difference value:

S (n0, n1) = argmax
k=1...5

max
d=h,v

Ed
k (n0, n1)

4. Finally take the average over 2S as a coarseness measure for the image:

Fcrs =
1

N0N1

N0∑
n0=1

N1∑
n1=1

2S(n0,n1)

Contrast In the narrow sense, contrast stands for picture quality. More detailed, contrast
can be considered to be influenced by the following four factors:

• dynamic range of gray-levels

• polarization of the distribution of black and white on the gray-level histogram

• sharpness of edges

• period of repeating patterns.

The contrast of an image is calculated by

Fcon =
σ

α4
z

with α4 =
µ4

σ4

where µ4 = 1
N0N1

∑N0
n0=1

∑N1
n1=1 (X(n0, n1)− µ)4 is the fourth moment about the mean

µ, σ2 is the variance of the gray values of the image, and z has experimentally been
determined to be 1

4 .

Directionality Not the orientation itself but presence of orientation in the texture is relevant
here. That is, two textures differing only in the orientation are considered to have the
same directionality.
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To calculate the directionality the horizontal and vertical derivatives ∆H and ∆V are
calculated by convolution of the image X(n0, n1) with the following 3 × 3 operators
respectively

−1 0 1
−1 0 1
−1 0 1

−1 −1 −1
0 0 0
1 1 1

and then for every position (n0, n1)

θ =
π

2
+ tan−1 ∆V (n0, n1)

∆H(n0, n1)

is calculated. These values are then histogramized in a 16 bin histogram HD and the
directionality can be calculated as the sum of second moments around each peak from
valley to valley.

To be able to use these features for image retrieval, they are slightly changed. For each of
these three features a per-pixel value is desired. To achieve per-pixel values, only the steps 1
to 3 are done in the calculation of the coarseness, resulting in a coarseness measure per pixel.
The contrast is calculated in 13 × 13 neighborhoods for each pixel and the directionality
is calculated pixelwise, too: Instead of the derivative filters, a Sobel filter is used and θ is
calculated for each pixel denoting the direction of the area around this pixel. Now, three
values are available for each pixel. One denoting the coarsenss, one denoting the contrast,
and one denoting the directionality for the neighborhood of the pixels. These values are used
in two different ways. First, we consider these values to be an RGB image and save it as such
and second, a 3 dimensional histogram is created from these values.

A second reason for changing this method is that [Tamura & Mori+ 78] do not make
completely clear how to calculate the global directionality measure. The QBIC system
[Faloutsos & Barber+ 94] uses these features and the authors write that they also altered
the processing steps slightly to obtain histograms describing the texture of the image.

4.7 Global Texture Descriptor

[Terhorst 03] describes a texture descriptor to characterize complete images. The descriptor
consists of five parts, where each part models different properties of the texture of the image.
The parts are

Fractal dimension measures the roughness or the crinkliness of a surface. In this work it
is calculated using the reticular cell counting method[Rao 90, Haberäcker 95].

Coarseness characterizes the grain size of an image. Here it is calculated depending on the
variance of the image.

Entropy is a measure of unorderedness or information content in an image. Entropy is a
well-known measure from information theory.

Spatial gray-level difference statistics (SGLD) This statistics describes the brightness
relationship of pixels within neighborhoods. It is also known as co-occurrence matrix
analysis [Zucker & Terzopoulos 80, Haralick & Shanmugam+ 73].
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Figure 4.6: Extraction of local features.

Circular Moran autocorrelation function measures the roughness of the textures. For
the calculation a set of autocorrelation functions is used. [Gu & Duncan+ 89].

In this work we obtain a 43 dimensional vector consisting of one value for the fractal
dimension, one value for the coarseness, one value for the entropy and 32 values for the
SGLD statistics, and 8 values for the circular Moran autocorrelation function. Details about
the computation and the background can be found in [Terhorst 03]

4.8 Local Features

Local features are small square images taken from the original images. It is known, that
local features can yield good results in classification tasks. Details about this can be found
in [Paredes & Perez-Cortes+ 01, Kölsch 03]. Local features have some interesting properties
for image recognition, e.g. they are inherently robust against translation. In the remainder of
this section we briefly summarize how local features are used for classification and how this
method is adopted for image retrieval.

Local features are small square images taken from the original image. Local representa-
tions might be of size 15× 15, 17× 17 or larger. Many local features are extracted from one
image. The number of local features extracted per image varies, but usually is between 100
and 1000. The positions from which the local features are extracted are usually determined by
local variance of the gray values. That is, we assume that positions with high local variance
are of some importance for the content of this image and thus extract a local feature from
these positions. The feature extraction is depicted in figure 4.6.

The classification process with local features is a two step process: The training phase and
the testing phase. In the training phase, local features are extracted from all of the training
images, resulting in a huge amount of local features. To reduce the amount of data a PCA
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Figure 4.7: Classification using local features.

dimensionality reduction is applied where each local feature is reduced to be 40 dimensional.
Then a KD tree is created from these local features to allow faster searching in the testing
phase.

To classify a test image, first the local features are extracted in the same way as in the
training phase, then the same PCA dimensionality reduction is applied. This step results in
a set of local features. Each of these local features is then used to query the KD tree from the
training phase for its nearest neighbors. That is, each of the local features is classified. These
classification results are then used to obtain the global classification result by direct voting.

The whole classification process is depicted in Figure 4.7. Detailed research on variations
of this method is reported in [Kölsch 03].

4.9 Histograms of Local Features

Using histograms of local features is motivated by the fact that for image retrieval good
response times are required and this is hard to achieve using the huge amount of data incor-
porated in approaches using local feature queries. Here the amount of data is reduced by
estimating the distribution of local features for each of the images.

To give an estimation of the distribution we create histograms of the local features. This
is not possible in a straightforward manner, because even after the PCA dimensionality re-
duction the data still is 40 dimensional and even if each dimension is split into two bins only,
a 240 bin histogram would emerge which is not feasible. To circumvent this problem we apply
a two step processing:

First a clustering algorithm is applied to a reasonably large set of local features. The
obtained partitioning allows us to represent all local features by a cluster number, thus dis-
cretizing the local features by using a code book. To create a local feature histogram for an
image, the local features are extracted and for each of the local features the cluster represent-
ing it best is determined. Then a histogram of these cluster memberships is created.

This process allows adjusting the amount of data easily. By creating many cluster centers
a large histogram is yielded and by creating only a few cluster centers smaller histograms are
yielded. The histogram has the same number of bins as the partitioning has clusters. This
process is depicted in Figure 4.8.
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Figure 4.8: Creation of local feature histograms.

4.10 Region-Based Features

Another approach to represent images is based on the idea to find image regions which
roughly correspond to objects in the images. To achieve this objective, the image is seg-
mented into regions. The task of segmentation has been thoroughly studied [Pal & Pal 93]
but most of the algorithms are limited to special tasks because image segmentation is closely
connected to image understanding. Nevertheless, image segmentation is used in many applica-
tions and some image retrieval systems use image segmentation techniques [Wang & Li+ 01,
Carson & Thomas+ 99].

Here we propose an image segmentation algorithm closely related to the methods from
the BlobWorld system [Carson & Thomas+ 99].

To segment an image we represent it as a set of pixels where each pixel is represented as a
feature vector of 8 dimensions. The 8 dimensions are the R, G, and B value of the pixel, the
coarseness, the contrast, and the directionality calculated for the pixel (cp. Section 4.6) and
the x and y position of the pixel. Given this set of pixel vectors LBG-clustering is applied
(cp. Section 2.2.2) and a partitioning of the pixels is obtained. From this partitioning a new
image is created, where each pixel value is the number of the cluster to which it has been
assigned. To this image a post processing algorithm is applied to delete noise. That is, a
maximum vote filter over k × k windows with k = 5, 10, or 15 is applied to the image.

Given this partitioning, the average color, the average coarseness, the average contrast
and the average directionality for each of the regions is calculated and saved together with
the size of the regions. In Figure 4.9 some example images with different segmentations are
given. The regions are depicted in their average color.

To compare images based on region descriptions, special comparison methods have to
be used because images might contain different numbers of regions. Some approaches to
comparing region based image descriptors are described in Chapter 5.4. A similar approach
to segmentation has been proposed in [Carson & Thomas+ 99] and the feature extraction
code is freely available1.

4.11 PCA Transformed Features

Principal component analysis (PCA) (also known as Karhunen-Loève Transformation) is a
method for dimensionality reduction. Assuming data is high-dimensional it aims at reducing

1http://elib.cs.berkeley.edu/photos/blobworld/
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Figure 4.9: Example segmentations of images with varying number of regions and
varying k for smoothing

the number of features. Unnecessary features, for example, might be strongly correlated with
other features or constant. Feature reduction is a common problem in many branches of
science like psychology and mathematics.

Principle component analysis is an unsupervised approach to extract the appropriate
features from the data. To achieve this, first the D-dimensional mean vector µ and the
D ×D covariance matrix Σ are computed from the full data set. Then the eigenvectors and
the eigenvalues are computed. In this work, the calculation of eigenvectors and eigenvalues
is done using Singular Value Decomposition (SVD). The eigenvalues and eigenvectors are
sorted according to decreasing absolute eigenvalue. Let v1 be the eigenvector with eigenvalue
λ1, v2 with eigenvalue λ2, . . . , vD with eigenvalue λD. Then the k eigenvectors with largest
eigenvalues are chosen to form a k × D matrix A. Using this matrix, the data vectors are
projected to a k-dimensional subspace

x′ = A(x− µ).

This method can be applied to any type of data and we use it to reduce the dimensionality
of the local features, the raw pixel data, as well as the different types of histograms.

4.12 Correlation of Different Features

Since we described several different types of features, we are faced with the problem of selecting
an appropriate set of features to use for a concrete image retrieval task. Obviously, there are
some similarities between different features. To detect these, we propose to create a distance
matrix of a database using all the features available, that is, for each image all distances to all
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other images are calculated. For a database of N entries with M features each, an N2 ×M
matrix D is created. From this matrix the covariance Σ is calculated as

Σi,j = E (DiDj − E(DiDj))

where Di and Dj denotes the distances between the i-th and j-th features respectively. From
this M ×M covariance matrix the correlation matrix R is calculated as

Ri,j =
Σi,j√
Σi,iΣj,j

.

The entries from this correlation matrix can be interpreted as similarities of different features.
A high value Ri,j means a high similarity in the distances calculated by features i and j,
respectively. This similarity matrix R can be converted easily to a dissimilarity matrix D by

Di,j = 1− |Ri,j |

and then visualized using multi-dimensional scaling.
Multidimensional scaling seeks a representation of data points in a lower dimensional space

while preserving the distances between data points as good as possible. In this case the data
is presented in a 2 dimensional space though it is easily possible to extend this methods to
higher dimensions.

Many different possibilities to obtain such representations exist. These methods differ in
the way they define which distances are being preserved. A basic version of multidimensional
scaling is contained in PCA dimensionality reduction. There, the best possible projection
into a subspace is searched. In this work a MatLab library which is freely available2 is used
for multi-dimensional scaling.

2http://www.biol.ttu.edu/Strauss/Matlab/matlab.htm
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Chapter 5

Comparing Features

In Chapter 4 we introduced several different features to represent images in order to be
able to decide whether two images are similar or not. In this chapter we introduce different
dissimilarity measures to compare features. That is, a measure of dissimilarity between two
features and thus between the underlying images is calculated.

5.1 Histogram Comparison Measures

Many of the features presented are in fact histograms (color histograms, invariant feature
histograms, texture histograms, local feature histograms, and Gabor feature histograms). As
comparison of distributions is a well known problem, a lot of comparison measures have been
proposed and compared before [Puzicha & Rubner+ 99].

5.1.1 Bin-by-Bin Comparison Measures

Bin-by-bin comparison measures for histograms can usually be computed very fast but due
to the fact that they only compare bin-wise they cannot account for similarities between the
underlying values of the bins. For example in Figure 5.1 the histograms a) and b) have the
same distance as the histograms a) and c), but obviously a) and b) should be more similar if
they were gray value histograms.

In the following, dissimilarity measures to compare two Histograms H and H ′ are proposed.
Each of these histograms has M bins and Hm is the value of the m-th bin of histogram H.

a)

1 2 3 4 5 6 7
m

b)

1 2 3 4 5 6 7
m

c)

1 2 3 4 5 6 7
m

Figure 5.1: Three histograms with pairwise identical bin-by-bin distances although
a) and b) should be more similar than e.g. a) and c).
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Minkowski Distances

Minkowski Distances are a group of distance functions defined by

dp

(
H,H ′) =

(
M∑

m=1

(
Hm −H ′

m

)p) 1
p

.

The well known and widely used Euclidean distance is d2 and has been proposed for computing
dissimilarity scores between images. These distances are easily computable in O(M). This
group of distances is not restricted to histograms. Other frequently used distances from the
group of Minkowski distances are d1, which is known as Manhattan distance, and d∞, known
as maximum distance.

Histogram intersection

Histogram intersection [Swain & Ballard 91] is a distance measure specially developed to com-
pare histograms. It is intuitively motivated by calculating the common part of two histograms.
It explicitly neglects features occurring in one histogram only. It is given by

d∩
(
H,H ′) =

M∑
m=1

min
(
Hm,H ′

m

)
and can be seen as a generalization of d1 since when comparing histograms with the same
bins the following holds:

d∩
(
H,H ′) = 1− d1 (H,H ′)

2

Relative Deviation

Relative Deviation gives the deviation between two histograms.

drd

(
H,H ′) =

√∑M
m=1 (Hm −H ′

m)2

1
2

(√∑M
m=1 Hm

2 +
√∑M

m=1 H ′
m

2

)
Relative Bin Deviation

The Relative Bin Deviation is the bin-wise deviation between two histograms.

drbd

(
H,H ′) =

M∑
m=1

√
(Hm −H ′

m)2

1
2

(√
Hm

2 +
√

H ′
m

2

)
χ2-Distance

The χ2-distance is a formal method to determine whether two distributions differ. To compare
two histograms, we calculate:

dχ2

(
H,H ′) =

M∑
m=1

Hm −H ′
m

Hm + Hm
.x
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Kullback-Leibler Divergence

The Kullback-Leibler divergence, which has its roots in information theory, is defined by

dKL

(
H,H ′) =

M∑
m=1

Hm log
Hm

H ′
m

.

It measures how inefficient it would be to code one histogram using the other. A problem
with the Kullback-Leibler divergence is that it is neither symmetric nor numerically stable.

Jensen Shannon Divergence

The Jensen Shannon divergence, also referred to as Jeffrey divergence, is an empirical exten-
sion of the Kullback-Leibler divergence. It is symmetric and numerically more stable. It is
given by

dJSD

(
H,H ′) =

M∑
m=1

Hm log
2Hm

Hm + H ′
m

+ H ′
m log

2H ′
m

H ′
m + Hm

.

Fidelity Based Distance Measures

Another measure of distance between probability distributions is the so called fidelity. The
fidelity is also known as Bhattacharyya distance in image processing:

dF

(
H,H ′) =

M∑
m=1

√
Hm

√
H ′

m

In [Nölle 03] the author proposes to use the following distance measures and points out that
several of them are metrics:

dF

(
H,H ′) = 1− dF

(
H,H ′)

d√1−F

(
H,H ′) =

√
1− dF (H,H ′)

dlog(2−F )

(
H,H ′) = log

(
2− dF

(
H,H ′))

darccos F

(
H,H ′) =

2
π

arccos dF

(
H,H ′)

dsin F

(
H,H ′) =

√
1− d2

F (H,H ′)

5.1.2 Cross-Bin Comparison Measures

Since the distance measures described so far neglect similarities between different bins of the
histograms, even small changes in color or lighting conditions may lead to major changes in
histogram distances. The measures described in the remainder of this chapter are developed
to overcome this problem. Similarities between the underlying values represented by different
bins are taken into consideration.
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Quadratic Forms

Quadratic Forms are capable of considering the similarities between different bins by incor-
porating a matrix A = (Am,n) with Am,n denoting the dissimilarity between the bins m
and n.

Let H and H ′ be the histograms represented as vectors, then the Quadratic form can be
calculated as

d�
(
H,H ′) =

√
(H −H ′)T ·A · (H −H ′).

A high dissimilarity between the underlying values of different bins Hm and H ′
n is denoted by

a high value Am,n, thus differences between these bins are taken into account stronger than
differences between bins H ′

m and H ′
n′ where Am′,n′ is a low value. A common setting for the

Am,n is

Am,n = 1− d2(Vm,Vn)
dmax

where d2(Vm,Vn) is the Euclidean distance between the values represented by bins m and n
respectively and dmax = maxm,n d2(Vm,Vn) [Faloutsos & Barber+ 94].

Earth Movers Distance

The Earth Movers Distance (EMD) [Rubner & Tomasi+ 98] reflects the minimal amount of
work that has to be performed to transform one distribution into the other by shifting portions
of the distribution between bins. This is a special case of the transportation problem.

That is, computing the EMD requires a transportation problem to be solved. The EMD
dEMD(H,H ′) between the histograms H and H ′ is calculated as

dEMD(H,H ′) =

∑
i,j di,jgi,j∑

i,j gi,j
.

Here di,j denotes the dissimilarity between bin i and bin j and gi,j ≥ 0 is the optimal flow
between the two distributions such that the total cost

∑
i,j di,jgi,j is minimized. The following

constraints have to be taken into account for all i, j:∑
i

gi,j ≤ H ′
j∑

j

gi,j ≤ Hi∑
i,j

gi,j = min(Hi,H
′
j)

A major advantage of the EMD is that each image may be represented by a histogram with
individual binning.

Time Warp Distance

The time warp distance is deduced from the non-linear time alignment in speech recognition.
In speech recognition time alignment is necessary to account for different speaking rates, to
be able to determine the word and phoneme borders and to account for breaks in spoken
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a)

1 2 3 4 5 6 7 8 9
m

b)

1 2 3 4 5 6 7 8 9
m

c)

1 2 3 4 5 6 7 8 9
m

Figure 5.2: Time warp distances: T
(
Ha,Hb

)
= 6, T (Ha,Hc) = 16, T

(
Hb,Hc

)
= 22

in contrast to Euclidean distance, which is 46.9 for all three combinations.

(a) alignment graph between histogram
a and b from Figure 5.2.

(b) alignment graph between histogram
a and c from Figure 5.2.

Figure 5.3: Examples of alignment graphs.

language. Time alignment can be done linearly, that is, if the signals are of different lengths,
the shorter one is stretched and then the alignment is done element wise. This method does
not work well, to cope with this problem, a non-linear time alignment function has to be
introduced. Non linear time alignment can be seen as an optimization problem: The optimal
path, minimizing the differences between the two sequences has to be found. The search
of the optimal path is done with dynamic programming. Details about this method can be
found in [Ney 99].

We propose to use this method of aligning two different sequences to align histograms.
Brightening or darkening an image shifts its histogram and changing the contrast stretches
or compresses the histogram. Using the optimization method from non-linear time alignment
it is possible to account for these operations. That is, a shifted histogram should not have a
high distance to the original histogram. An example of different histograms and the distances
between them is given in Figure 5.2. Three histograms are compared. Two of them are very
similar and the third is completely different. The calculated bin-by-bin distance measures are
pairwise identical. The calculated time warp distances reflect the similarities. Two example
alignment graphs are given in Figure 5.3.

The time warp distance is the minimal distance between two histograms of all possible
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(a) (0, 1, 2) model (b) (−1, 0, 1) model

Figure 5.4: Deformation constraints for time warp distance.

alignments given some deformation constraints. For the time warp distance it is possible to
select certain parameters. A penalty for a distortion can be selected and different distortion
restrictions can be used. In this work we consider two different deformation constraints
known as (0, 1, 2)-standard model and (−1, 0, 1)-model and each deformation is given the
same penalty. The allowed distortions for these two models are depicted in Figure 5.4. For
the time warp distance it is required that neighboring bins are similar and that the bins are
ordered. That is, the similarity of a bin to other bins lowers with the distance in the histogram
between the bins.

5.2 Comparing Images

Comparing images directly, that is comparing the values of the pixels of the image directly is
quite often used in object recognition. Different methods have been proposed to do this and
a selection of these methods is presented here and can be used in the image retrieval system
which evolved from this work.

5.2.1 Euclidean Distance

Probably the most common approach to compare images directly is the Euclidean distance or
other distances from the group of Minkowski distances. To be able to compare images using
a Minkowski distance, the images have to be of the same size which can be achieved easily
with scaling algorithms. The Euclidean distance has been used successfully e.g. in optical
character recognition and has been extended by different methods.

5.2.2 Tangent Distance

Image objects are usually subject to affine transformations, such as scaling, translation, and
rotation. The Euclidean distance is not able to account for such transformations if they are
not part of the training corpus. Tangent distance [Keysers & Macherey+ 01] is an approach
to incorporate invariance with respect to certain transformations into a classification system.
Here, invariant means that image transformations that do not change the class of the image
should not have a large impact on the distance between two images.
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Let X ∈ RD be a pattern and t(X, α) denote a transformation of X that depends on a
parameter L-tuple α ∈ RL. We assume that t does not change class membership (for small
α). The manifold of all transformed patterns MX =

{
t(X, α) : α ∈ RL

}
⊂ RD now offers

new possibilities for distance calculations. The distance between two patterns X and Q can
be defined as the minimum distance between the two manifold MX and MQ, which is truly
invariant with respect to the regarded transformations:

dt(X, Q) = min
α,β∈RL

{
||t(X, α)− t(Q, β)||2

}
Since the distance calculation between these manifolds is a hard non-linear optimization

problem it is necessary to find optimization techniques. In this case optimization is done using
a tangent subspace approximation M̃. This subspace is spanned by a set of tangent vectors
Xl that are the partial derivatives of the transformation t with respect to the parameters
αl. Thus, the transformation t(X, α) can be approximated using a Taylor expansion around
α = 0. The set of points consisting of all linear combinations of the tangent vectors Xl in the
point X forms the tangent subspace M̃X . This is a first-order approximation ofMX .

The use of linear approximation allows to calculate the distances as a solution of a least
square problem or projections into subspaces. Both are computationally inexpensive opera-
tions.

In optical character recognition the use of six affine derivatives and one derivative account-
ing for line thickness yields very good results. In other domains (e.g. radiograph recognition)
line thickness is replaced by brightness.

5.2.3 Image Distortion Model

The image distortion model has been investigated earlier at the Lehrstuhl für Informatik IV of
the RWTH Aachen [Keysers & Dahmen+ 03] and further research is presented in [Gollan 03].
The image distortion model is an easily implemented method allowing for small local defor-
mations of an image. Each pixel is aligned to the pixel with the smallest squared distance
from its neighborhood. These squared distances are summed up for the complete image to
get the global distance. To compare a query image Q with a database image X, d(Q,X) is
calculated as

didm(Q,X) =
N0∑

n0=1

N1∑
n1=1

n0+w
min

n′0=n0−w

n1+w
min

n′1=n1−w

{
d′
(
Q(n0, n1), X(n′0, n

′
1)
) }

Here w is the warp range, that is the radius of the neighborhood in which a pixel may be
chosen for alignment and d′ is a pixel distance comparing the image pixels Q(n0, n1) and
X(n′0, n

′
1). This method can be improved strongly by enhancing the pixel distance d′ to

compare sub images instead of single pixels only:

d′
(
Q(n0, n1), X(n′0, n

′
1)
)

=
ω∑

x=−ω

ω∑
y=−ω

(
Q(n0 + x, n1 + y)−X(n′0 + x, n′1 + y)

)2
Further improvement is achieved by using derivatives instead of the images directly. Intu-
itively, the use of derivatives makes the image distortion model align edges to edges and
homogeneous areas to homogeneous areas.

In [Gollan 03] further methods for aligning images are proposed, but these are not consid-
ered due to the high computational complexity.
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5.3 Comparing Images Based on Local Features

The method how local features are used for classification (cp. Section 4.8) is not directly
transferable to image retrieval. In classification, for each class there is one large set of local
features, but in image retrieval there is usually no class information. The aim is to find the
most similar images.

To use local features for image retrieval at least three different methods are applicable: 1.
direct transfer, 2. local features on a per image basis, 3. histograms of local features.

5.3.1 Direct Transfer

The method used in classification with local features is transferable to image retrieval. For
this, local features are extracted from each of the database images, the PCA dimensionality
reduction is applied and the KD tree is created. To query the database for an image, we
extract the local features from the query image and apply the same PCA dimensionality
reduction. Then the KD tree is queried for each of these query local features and for each of
the database images we count how many of its local features have been found as a nearest
neighbor to one of the query local feature. Finally the images from the database with the
highest number of votes are returned. This method is equivalent to the method used in
classification if each image is considered to constitute its own class.

5.3.2 Local Feature Image Distortion Model

Another possibility to use local features for image retrieval is based on the idea to take into
account the distances between the local features from the images. That is, we calculate a
distance d (Q,Xn) between the image Xn and the query image Q represented by their sets of
local features {xn1 . . . xnM} and {q1 . . . qK} respectively.

To calculate the distance dlf (Q,Xn) comparing the images Xn and Q we try to explain
each of the local features from the query image Q using the local features from image Xn.
That is, for each of the local features qk from the query image, the nearest neighbor x̂nm is
searched from the set of local features {xn1 . . . xnM}, the distances d(qk, x̂nm) are calculated,
and summed up to get the distance between the original images X and Q:

dlf (Q,Xn) =
K∑

k=1

d(qk, x̂nm)

This method is closely related to the image distortion model (cp. Section 5.2.3) without
any deformation constraints. The IDM considers all possible subimages and here only a subset
is considered.

5.4 Comparing Region-Based Descriptions of Images

To compare images based on the regions occuring in the images the distance measures de-
scribed up to here are not applicable since different images might contain a different number
of regions and even if the images do have the same number of regions it is not obvious how
to compare them: which region in the one image corresponds to which region in the other
image is not clear, an appropriate alignment has to be found.
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Different approaches to comparing regions based descriptions of images have been pro-
posed. In the BlobWorld system [Carson & Belongie+ 02] the user has to select a region and
then images containing similar regions are searched. Here, the user gives additional informa-
tion to the system. Since we want a full-automatic system, this approach is not applicable.

5.4.1 Integrated Region Matching

An approach called integrated region matching (IRM) [Wang & Li+ 01] leads to good results.
The IRM finds a matching from one set of regions to the other and is then able to compute a
dissimilarity score. To find this matching, the IRM allows a region in one image to be matched
with several regions in another image. Assume that image 1 and image 2 are represented by
region sets R1 = {r1, . . . , rm} and R2 = {r′1, . . . , r′n}. First an m×n distance matrix between
these two region sets is computed. To compute the distance between the region sets R1 and
R2, first a matching of all regions from image 1 to the regions of image 2 is created. To
create this matching, significances si and s′i respectively for each of the regions are calculated
as fraction of the size of the region to the complete image. These significances denote the
importance of the region in the image and a significance is assigned to each region alignment
to denote the importance of this alignment with respect to the complete matching. Finally,
the distance d(R1, R2) is calculated as

dirm(R1, R2) =
∑
i,j

si,jdi,j

where di,j is the distance between the regions ri and r′j and si,j is the according significance.
The matching is created in a greedy manner. That is, the regions that fit well are matched

first: Assume di,j is the smallest distance between any two regions, then the region pair ri

and r′j is matched next. Then the significances of both regions are decreased by the minimum
of these two significances:

si ← si −min{si, sj} s′j ← s′j −min{si, s
′
j}.

The process ends when there is no si, s
′
j 6= 0 left, that is, the regions of image 1 are completely

matched to the regions of image 2, where each region might be partially matched to different
regions of the other image.

This matching has the following advantages: It is easily computable and if the images
compared are identical, the resulting distance is 0 because only identical regions are matched.

5.4.2 Quantized Hungarian Region Matching

Due to the greedy method, IRM does not always lead to the best result. Finding the best result
is much more complicated, but with some quantization of the significances of the regions, it is
possible to convert this matching problem into an assignment problem, which is computable
in O(n3), where n is the number of regions, using the Hungarian algorithm.

For the Hungarian algorithm to be applicable, a square distance matrix is required, but
two images may have different numbers of regions. Also the Hungarian algorithm creates
one-by-one alignments. As this constraint is not required and to create a square distance
matrix the region descriptions the images are split such that each image is described by a
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r′1

r′2

r1

r2

r3

Figure 5.5: Region alignments for the quantized Hungarian region region matching.

total of 50 regions. In this step the region sizes (and thus the significances) are quantized to
be multiple of 0.02. Thus, after the splitting, each image is described by a set of 50 region
descriptions, where each description is of size 0.02.

Given these descriptions of two images, a 50 × 50 distance matrix D is created with di,j

is the distance between the regions ri from image 1 and r′j from image 2. To this matrix
the Hungarian algorithm is applied resulting in the best possible one-by-one matching from
the 50 regions from image 1 to the 50 regions from image 2. Intuitively, each of the initial
regions from image one is partially mapped to one or more regions from image 2. This
matching process is depicted in Figure 5.5. The image on the left hand is described by three
regions. The image on the right hand is described by two regions. Each of these region sets
is subdivided into 50 region descriptors and for the 50 region descriptors from image 1 the
perfect matching to the 50 region descriptors from image 2 is found.

Given this matching, the quantized Hungarian region matchin distance is calculated by
summing up the single distances as in the IRM

dqhrm(R1, R2) =
∑
i,j

si,jdi,j

to obtain the total distance between image one and image two. Here, si,j is set to 0.02.

5.5 Other Features

Up to here, we presented methods to compare histograms, images, region based descriptions,
and local feature representations of images. Some features do not belong to any of these
categories like PCA transformed features, invariant feature vectors and global texture features.
To compare these features, we propose to use the Euclidean distance or the Mahalanobis
distance to account for different domains of vector elements. Let Q be the N -dimensional
vector for the query image and X be the N -dimensional vector for the database image to be
compared, then the Mahalanobis distance between X and Q is calculated as the result from
the quadratic form

dM

(
Q,X ′) =

√
(Q−X)T · Σ−1 · (Q−X),

where Σ−1 is the inverted covariance matrix.
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Chapter 6

Applications

This chapter gives an overview of the applications developed in this work and the techniques
used. Since the aim of this work is to evaluate the quality of different features for image
retrieval, we developed a large variety of feature extraction tools. Details about these tools
can be found in Appendix A.

Here, we present the applications that use the features. Since the main goal was to evaluate
features for image retrieval, the focus was put on the development of an image retrieval system
capable of using all the features described in Chapter 4. Additionally, an application capable
of clustering images according to similarities between certain features was developed.

6.1 Content-Based Image Retrieval

As the aim was to develop a content-based image retrieval system to test different types of
features and dissimilarity measures, the main goal in the development was to create a highly
flexible system capable of dealing with a large number of different features. To achieve these
objectives the Flexible Image Retrieval Engine (FIRE) was developed. FIRE is a suite of two
programs. A server and a web client which is to be run on a web-server. The server itself can
be run on any computer.

If a query is performed from the web-interface the client sends the filename of the image
to be queried to the server, the server loads this image and the features extracted for it and
then compares these features to all the images from the database using the selected distance
measures. Then the server sends the query result to the client, which presents the result to the
user. In addition to the images resulting from the query some query performance measures
are calculated and also presented to the user. Details about these performance measures are
presented in Section 8.1.

After a query has been performed, the user may mark some of the results as “good”
or “bad” and use these to query again. This is also known as relevance feedback and may
improve the query result strongly [Müller & Müller+]. Two versions of the query interface
are available: one very simple interface which provides only the basic functions and a more
sophisticated interface where nearly all settings of the server can be changed easily.

Apart from this interactive mode, several options to test the query performance of the
image retrieval system have been implemented. For example, it is possible to query a database
with each of its images in a leaving-one-out manner. That is, the database is queried with
each image and the remaining images are used to calculate performance measures. The results
are averaged over the whole database.
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A screenshot of the web interface is given in Figure 6.1. At the top the settings for the
query can be adjusted . It is a list of the features available for the database. For each feature
the distance measure and the weight used can be modified. Also the number of results to be
shown can be changed. In the Section “Results” the results are shown. The top-left image
is the query image and the other images are its nearest neighbors. For each image some
information is given: The image filename, the textual description, the class (if available), and
a score. Also, the results may be marked as “good” or “bad” to allow for relevance feedback
queries. Below the results a PR-graph is shown if available and some other performance
evaluation measures are given as well. At the bottom random images are given to allow for
new queries.

6.2 Grouping of Visually Similar Images

Image databases based on textual annotation are still quite common. A major drawback
of this method is that annotations, the textual descriptions, are often ambiguous. Google
recently offers a way to search for images based on textual information found in the context
of images. For example, the search for “cookie” results in four different types of images:
images of edible cookies or images of people eating cookies, screen-shots of programs dealing
with cookies in the context of the Internet, and images not concerned with cookies at all.
Even for words with less ambiguity nearly always two groups of images are returned: One
group of images meeting the requirements and one group of images not suitable. To improve
this situation we propose to use methods from computer vision to help the user reach his
goals faster and more comfortably. Improvement can be achieved by using the features used
for image retrieval examined in Chapter 4 in combination with clustering methods explained
in Section 2.2.

An application providing these capabilities was developed, and additionally a small web
interface for demonstration purposes has been created. The application provides access to
nearly all features and distance functions introduced in Chapters 4 and 5 and LBG-clustering
or k-means clustering can be chosen. In Figure 6.2 a screenshot of the application is given.
At the top the used clusteralgorithm is selected. Below, the settings for the k-means and
the LBG clustering algorithm can be selected. Also, the dissimilarity measure used and the
database to be clustered can be selected. At the moment the 100 words Google image search
was queried about are available here. Below this, the features to be taken into account can
be selected. When all settings are chosen according to the user’s preferences, the clustering
is started by hitting the “cluster” button. After the clustering process is finished the results
are shown. Under the results the output of the clustering program is given for debugging
purposes.

6.3 Classification

An extra application for classification is not necessary. Due to the strong connection between
classification and image retrieval (cp. Section 8.1) all experiments concerning classification
have been done using the FIRE framework in performance evaluation mode. The performance
evaluation mode calculates the average precision for the first results over the performed queries
P (1) and this is exactly the recognition rate of a nearest neighbor classifier. From this
follows that the error rate of a nearest neighbor classifier NN-ER can be calculated as NN-
ER= 1−P (1). This allows for using all the features presented in Chapter 4 for classification.
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Figure 6.1: Screenshot of FIRE.

47



Figure 6.2: Screenshot of the clustering application.
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Chapter 7

Databases

In this chapter we present the databases used to test the applications developed. Databases
used for image retrieval as well as databases where clustering was applied and databases defin-
ing a classification task are introduced. Results other groups obtained using these databases
are given along with the results we obtained on these databases in Chapter 8.

7.1 Corel

The Corel database is a large database of photographs of different scenes. It is widely used
in the field of content-based image retrieval, but comparison based on this database is very
difficult because the size of the database is enormous and different groups use different subsets
of this database. The size of the database used varies between 30 000 in the BlobWorld system
and 200 000 in the SIMPLIcity system. A subset of approximately 45 000 images was used for
the experiments done during the course of this work. The images are 384× 256 or 256× 384
pixels each.

The database is annotated, but the annotation has been done by different persons and
the quality of the annotation varies strongly between different images. Due to this, it is
not possible to use any direct approach for performance evaluation. Some example images
and their annotations are given in Figure 7.1. This figure shows that the annotations is
questionable. In one image there is a mistake in the annotation (“perfomer” instead of
“performer”) and in another image there is one word written in two different ways (“grouper”,
“growper”). The annotation of the database consists of 184 988 words in total, 13 811 different
words. That is, each image has 6.27 words of annotation in average, the maximum number
of annotating words is 15 and the minimum is 1. That is, we have a corpus nearly 14 000
classes where each image is member of 6 classes in average.

7.2 WANG

The WANG database is a subset of the Corel database of 1000 images which have been
manually selected to be a database of 10 classes of 100 images each. The images are subdivided
into 10 classes such that it is almost sure that a user wants to find the other images from a class
if the query is from one of these 10 classes. This is a major advantage of this database because
due to the given classification it is possible to evaluate retrieval results. One example of each
class can be seen in Figure 7.2. This database was also used for classification experiments.
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Figure 7.1: Example images from the Corel database.

africa beach monuments buses dinosaurs

elephants flowers horses mountains food

Figure 7.2: One example image from each of the 10 classes of the WANG database.

This database was used extensively to test the different features because the size of the
database and the availability of class information allows for performance evaluation as can be
seen in Section 8.1.

This database was created by the group of professor Wang from the Pennsylvania State
University and is available for download1. Since this database is a subset of the Corel database,
the images are of size 384× 256 or 256× 384 pixels as well.

7.3 Corel Subset

To have another corpus where performance evaluation is easily possible we created a database
similar to the WANG database. 1000 images from 10 classes were selected from the Corel
database. One example image for each class is shown in Figure 7.3.

1http://wang.ist.psu.edu/
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garden subsea plants birds royal guards

ireland models skiing surfing sunsets

Figure 7.3: Example images from the Corel subset.

7.4 IRMA

IRMA (Image Retrieval in Medical Applications) is a database of currently 3879 medical
radiographs, but it is still growing. In the future the database will consist of at least 10 000
images. The images were collected in a cooperation between the Department of Diagnostic
Radiology, the Department of Medical Informatics, and the Lehrstuhl für Informatik VI of
the Aachen University of Technology (RWTH Aachen) as part of the IRMA project2. For a
long time the database consisted of 1617 images only and until now all experiments have been
done using this older database. Here, we give all results for both of these databases to be able
to compare them to older results, as this work is the first to experiment with the new 3879
images database. The 3879 images are divided into a train database of 2832 images and a
test database consisting of 1016 images. Some images are left out since they are not classified.
For classification, this database can be used either as a 26 classes task or as an 8 classes task.
The 26 classes are a refinement of the 8 classes. The older 1617 images databases consisted
of 6 classes. One example from each of these classes is shown in Figure 7.4. This database is
basis of a very difficult task since images from the same class often are very different as can be
seen in Figure 7.5. The images have been labelled by radiologists [Güld & Schubert+ 03] and
thus allow for performance evaluation in image retrieval tasks. The classes describe the body
region of the image. The six classes are “abdomen”, “skull”, “chest”, “limbs”, “breast”, and
“spine”. The 8 classes are “abdomen”, “skull”, “chest”, “lower limb”, “upper limb”, “pelvis”,
“breast”, and “spine”. The 26 classes are a further refinement. Since this database is not
freely available, only results from participants of this project are available.

7.5 CalTech Datasets

[Fergus & Perona+ 03] use different datasets for unsupervised object training and recognition
of objects. They classify whether an object is contained in the image or not. For this purpose
they have several sets of images containing certain objects (motorbikes, airplanes, cats, cars,
and leaves) and a set of arbitrary images not containing any of these objects. For performance
evaluation of the image retrieval system some of their data sets were used. Most of the images

2http://www.irma-project.org
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Figure 7.4: One image from each of the six IRMA-1617 classes: “abdomen”, “skull”,
“chest”, “limbs”, “breast”, and “spine”.

Figure 7.5: Several images from class “chest” from the IRMA-1617 database.

are actually color images but for the experiments the images are converted to gray scale. For
classification, each of this datasets is split into disjunct training and a testing sets. The
database is freely available online3.

We use the motorbikes, the airplanes, and the faces, as well as the backgrounds. Example
images are provided in Figure 7.6. For our experiments the given partition of the data into
training and testing set was used. The training set was used as database in the image retrieval
system and the testing set was used to query the system.

7.6 UW Database

The UW database consists of 1109 pictures. The images are photographs and have been
created by the computer science department of the University of Washingten. The images are
of different sizes, from 640×480 up to 883 × 589. There is no class information of the images
but most of the images are annotated. The images which have not been annotated before
were annotated in the course of this work. Additionally, the images are grouped in categories,
e.g. “springflowers”, “barcelona”, and “iran”. In total there are 18 categories. Some example
images with annotation are shown in Figure 7.7. The annotation consists of 6368 words from
353 different words. In average, each image has 5.74 words of annotation. The maximum
number is 22, and the minumum is 1. The database is freely available4.

3http://www.robots.ox.ac.uk/˜vgg/data/index.html
4http://www.cs.washington.edu/research/imagedatabase/
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Figure 7.6: Examples of the CalTech datasets.
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Figure 7.7: Examples from the UW database with annotation.

7.7 ZuBuD

The “Zurich Buildings Database for Image Based Recognition”(ZuBuD) is a database which
has been created by the Swiss Federal Institute of Technology in Zürich and is described in
more detail in [Shao & Svoboda+ 03b, Shao & Svoboda+ 03a].

The database consists of two parts. A main part consisting of 1005 images of 201 houses,
5 of each house and a query part of 115 images. Each of the query images contains one of the
houses from the main part of the database. All pictures are of size 640 × 480. The pictures
of each house are taken from different viewpoints and some of them are also taken under
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(a) (b)

Figure 7.8: a) A query image and the 5 images from the same house in the ZuBuD-
database b) 6 images of different houses in the ZuBuD-database.

Figure 7.9: Example images from the MPEG-7 test set.

different weather conditions and with two different cameras. To give a more precise idea of
this database some example images are shown in Figure 7.8. The ZuBud database is freely
available on the Internet5.

7.8 MPEG-7 Test Set

The MPEG-7 Test set is a database of 2343 color images of size 376x256 or 256x376. It is
not very widely used in image retrieval systems since it is not freely available. To our knowl-
edge only the SIMBA system [Siggelkow & Schael+ 01] uses this database. The database
consists of photographs from various scenes. A large amount of the images are courtesy of
the Department of Water Resources, California, USA. Some example images are depicted in
Figure 7.9

In [Siggelkow 02] a set of 15 images was selected and for each of these images the relevant
images have been selected manually from the database. For each of the 15 images between 3
and 14 images were selected as relevant. Quantitative results for queries using this knowledge
about relevances are given and are compared to the methods presented here in Chapter 8.

7.9 Google

To test the clustering approach we created a new database of Google image search6 results by
querying Google image search with 100 English words and saving the first 120 thumbnails the
search returned. This yielded a database of 12 000 images from 100 classes. In Figure 7.10

5http://www.vision.ee.ethz.ch/ZuBuD
6http://images.google.com
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Figure 7.10: The first five results for five image searches on Google in March 2003.

the first five results for five different queries in google are presented. The saved images are of
different sizes, the smallest image is 26× 14 and the largest image is 150× 150. The database
was created in March 2003 and thus reflects the results from this date.

7.10 COIL

The Columbia Object Image Library (COIL) database is a well known database for image
object recognition. Two different COIL databases are available: COIL-20 [Nene & Nayar+b],
which contains gray images from 20 objects, and COIL-100 [Nene & Nayar+a] which contains
color images from 100 objects. Both databases consist of images taken from different 3D-
objects viewed from varying positions. Each image contains a single object subject to different
illumination conditions. In COIL-100 there are 72 images from each object of size 128×128
pixels. All objects used for the COIL-100 database are depicted in Figure 7.12. The COIL
databases are freely available7.

To be able to compare our results to results obtained by [Käster & Wendt+ 03], we use
the subset of 20 objects of COIL-100 semantically matching the COIL-20 database. These 20
objects are depicted in Figure 7.12.

7http://www1.cs.columbia.edu/CAVE/research/softlib/
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Figure 7.11: All objects from the COIL-100 database.

Figure 7.12: The 20 objects from the COIL-100 database corresponding to the objects
of the COIL-20 database.
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Chapter 8

Results

In this chapter the results for the image retrieval task, for the clustering task, and for classifi-
cation tasks are presented. The results for image retrieval and classification are described in
one section as these tasks are closely related. To be able to compare different image retrieval
results, first a set of performance measures is introduced. For the tasks where comparable re-
sults from other works are available, these results are presented in this section and compared
to the results obtained here.

8.1 Performance Evaluation for
Content-Based Image Retrieval

In [Müller & Müller+ 01] the authors investigate the possibilities of performance evaluation in
content-based image retrieval. Since there is no common standard for performance evaluation
for this task they propose a suitable set of performance measures for content-based image
retrieval. Their work is based on the performance evaluation methods used at the Text
REtrieval Conference (TREC). In this work this set of performance measures is adapted and
extended by further performance measures. Also the correlation of different performance
measures is analyzed.

The major problem in performance evaluation of content-based image retrieval systems is
that neither a standard test database nor a standard performance measure is available. Thus,
in early reports of content-based image retrieval systems, the results are often restricted to the
presentation of retrieval results of one or more example queries, which is easily used to give a
positive impression of the abilities of a system. Obviously, this is neither an objective nor a
quantitative measure and it is impossible to compare systems based on example results alone.
Apparently, an objective, quantitative performance measure is needed. The other problem is
that no standard database is available for content-based image retrieval. That is, many image
retrieval systems use different databases to present their results. Due to this it is impossible
to compare the performance of different systems even if quantitative results are given.

In textual information retrieval, several performance measures are well established and it
is reasonable to adapt some of them for content based image retrieval. Probably the most
commonly used performance measures in information retrieval are the precision P and the
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recall R defined as

P =
Number of relevant documents retrieved

Total number of documents retrieved

R =
Number of relevant documents retrieved

Total number of relevant documents

These two values are often combined into a so called PR-graph. These figures show how
many relevant and irrelevant documents are contained in the top ranked documents. PR-
graphs are described e.g. in [Schäuble 97] and are created in several steps: In the first step
it is assumed that the user inspects the n first documents of the ranked list. So for every
n = 1 . . . N precision Pn and the recall Rn is calculated. This results in a sawtooth curve
because considering one additional image may raise the precision or lower it. In the next step
this sawtooth curve is converted into a monotonic curve by setting

Pk := max{Pi | i ≥ k}.

This process can be interpreted as looking only at the locally optimal answer sets for which
recall and precision cannot be improved simultaneously by inspecting further documents. In
the last step the PR-graphs of different queries can be combined by calculating the arithmetic
means of precision values corresponding to the same recall value. That is, some recall values
are selected, the precision values corresponding to these values are calculated for each query
and averaged. In the context of this work, the PR-graph is always evaluated for 11 recall
values: R = 0.0, 0.1, 0.2 . . . 0.9, 1.0.

Since PR-graphs do not contain all the desired information and it is not clear how to
compare image retrieval systems looking at graphs, [Müller & Müller+ 01] propose to enhance
the PR-graph with a set of other performance measures that are defined in the following:
Rank1, R̃ank, P (20) , P (50) , P (NR), R (P = 0.5) , R (100). We propose to enlarge this set
by some further performance measures: P (P = R) , P (1), NN-ER, and PR-area. In the
following, the performance measures proposed are explained briefly:

Rank1. rank at which the first relevant image is retrieved

R̃ank. normalized average rank of relevant images

R̃ank =
1

NNR

(
NR∑
n=1

Ri −
NR(NR − 1)

2

)

where Ri is the rank of the ith relevant retrieved image and NR is the total number
of relevant images. This measure is 0 for perfect performance and approaches 1 as
performance drops. For random retrieval its expected value is 0.5.

P (20) ,P (50) ,P (NR). precision after 20, 50 and NR images retrieved

R (P = 0.5) ,R (100). recall at Precision P = 0.5 and Recall after 100 images retrieved

P (P = R). precision where Recall equals Precision

PR-area. the area below the PR-graph
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P (1). precision of the first image retrieved; Averaged over a whole database this is the
same as the recognition rate of a nearest neighbor classifier using the same features and
distance measures. Thus, the error rate of a nearest neighbor classifier can be calculated
as NN-ER= 1− P (1).

Given this set of performance measures it is possible to compare content-based image
retrieval systems quantitatively given a database where the relevance of the images is known
with respect to some queries. Usually relevances of images are not known, thus it is not
possible to calculate these measures for queries.

Databases where relevances are known are, for example, the IRMA database and the
WANG database. In both cases, classes are given and we can assume that a user querying
with an image from one class is looking for other images from the same class. For the
WASH database, relevances are not directly clear and assumptions have to be made to extract
relevances from the descriptions of the images. We assume that an image is relevant with
respect to a query image if the descriptions of the images contain identical words. To make
this relevance estimation more robust to inconsistencies in annotations the porter stemming
algorithm [Porter 80] is used. This algorithm removes word endings leading to the same result
e.g. for “house” and “houses”. This stemming is important since annotation was done by
several persons in most cases. After stemming is performed, the intersection of the sets of
words is calculated and if there is one stemmed word in both of the descriptions, we assume
that the images are relevant with respect to each other.

To be able to compare the performance of image retrieval system more easily it would
be preferable to have a single performance measure. Since all the measures are supposed to
measure the quality of the retrieval system in one way or another it is obvious to assume
a strong correlation. However, to our knowledge so far no quantitative analysis for this
assumption was made. Here we present such an analysis using the WANG and the IRMA
databases. A correlation matrix for a selection of performance measures is given in Figure 8.1.
This matrix shows that the performance measures are indeed strongly correlated and thus to
compare image retrieval systems it should be sufficient to use only one performance measure.
A very strong correlation can be seen between the neighboring values from the PR-graph.
Values not so strongly correlated to the other measures are R(P = 0.5) and P (R = 1). This
is due to the fact that both values do not reflect the quality of the first images retrieved but,
especially P (R = 1), consider the last images retrieved. For a user searching for images it is
usually more important to find suitable images fast than to find the last suitable image. If
a more detailed analysis is needed or a specified property of a system needs to be measured
it is advisable to consider more or all of these performance measures. In this work, the error
rate (ER) is selected as performance measure to compare the different settings as it is a well
established performance measure in classification tasks and the average absolute correlation
from P (1) to the other performance measures is 0.83.

8.2 Results for Content-Based Image Retrieval

Since we investigated a lot of features and a lot of distance functions we are interested in the
discrimination performances of these: Which features/dissimilarity measures lead to good
results and which do not.

First, different distance measures for the different types of features are compared. Af-
terwards different features are compared using the best distance measures according to the
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Figure 8.1: Correlation of performance measures scaled to [−100, 100].

experiments before. The experiments are done on the WANG and the IRMA-1617 corpus
since the size and the given classification allow for extensive performance evaluation. The
insights obtained on these databases are later transferred to other image retrieval tasks.

8.2.1 Comparison of Different Distance Functions

In this section different dissimilarity measures for the different types of features are com-
pared experimentally and the performance for the different types of features is quantitatively
measured. The experiments were done using the WANG and the IRMA-1617 corpus. First
comparison measures for histograms, then the different distance measures for images, the dif-
ferent methods to compare images based on local features, and finally the different comparison
measures for region based descriptions of images are analyzed and compared.

Different Comparison Measures for Histograms

Exemplary results (error rates) obtained using different comparison measures for histograms
are shown in Table 8.1 for the WANG database and for the IRMA-1617 database. For the
WANG database an invariant feature histogram with f(X) =

√
X(4, 0) ·X(0, 8) was used

and for the IRMA database a local feature histogram with 512 bins of 5×5 local features was
used. Complete tables can be found in Appendix B in Tables B.4 and B.5. Corresponding
PR graphs are shown in Figure 8.2. The results show that L1 distance, χ2 distance and
Jensen Shannon divergence yield very similar results and clearly outperform the widely used
Euclidean distance.

Since the time warp distance was not investigated before, the results obtained using the
time warp distance with different parameters are presented here in more detail. The time
warp distance has three parameters: different models for the deformation constraints are
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Table 8.1: Error rates [%] on WANG and IRMA-1617 using different comparison
measures. For the WANG database an invariant feature histogram with
f(X) =

√
X(4, 0) ·X(0, 8) and for the IRMA-1617 database a local fea-

ture histogram was used.

WANG IRMA-1617
Distance measure ER[%] Distance measure ER[%]
JSD 15.9 L1 8.3
χ2 16.5 χ2 9.1
L1 18.4 JSD 9.3
Euclidean 28.3 Euclidean 14.2

Table 8.2: Error rates [%] using time warp distance on the IRMA-1617 database with
an invariant feature histogram with f(X) =

√
X(4, 0) ·X(0, 8). The last

column gives the corresponding error rate without warping.

Distance ER[%] base ER[%]
L1 34.7 35.6
L2 41.1 42.4

available, the underlying local distance can be varied, and the deformation penalty can be
varied.

In Figure 8.3 the results for different parameter settings for the time warp distance are
shown comparing invariant feature histograms with f(X) =

√
X(4, 0) ·X(0, 8). This type of

histogram does not lead to good results for the IRMA database but the time warp distance
is not applicable to every type of histogram as it requires an ordering of the bins (cp. Section
5.1.2), e.g. the time warp distance is not applicable to local feature histograms. Figure 8.3(a)
gives error rates for different penalties and different deformation constraints using an L1 type
distance and Figure 8.3(b) gives error rates using different penalties and different deformation
constraints using an L2 type distance. The results improve using the time warp distance. In
both cases the choice of the deformation model is not very important but the penalty is
a sensitive parameter. In both cases the deformation penalty has to be within a certain
range to obtain good results. If the penalty is chosen too low (e.g. “penalty=0”), the results
are quite bad, due to the fact that unsimilar histograms can be aligned too good. The
fact that L1 distance outperforms Euclidean distance was observed earlier in this work for
histograms. Both graphs show that the time warp distance improves the results compared to
the underlying base distance. The best error rates in comparison to the error rates obtained
with the base distances are given in Table 8.2.

Different comparison measures for images

For comparing images directly, the Euclidean distance, the image distortion model, and the
tangent distance were proposed. Table 8.3 shows results for these three comparison measures
for the WANG and IRMA-1617 databases.

The results show that in both cases the image distortion model yields the best and the
simple Euclidean distance the worst results. However, it can be seen clearly that taking the
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(b) PR graphs for WANG using different distance measures.

Figure 8.2: PR graphs for WANG and IRMA-1617 using different distance functions.

images into consideration for retrieval is advisable for the IRMA task but not advisable for
the WANG task. This leads us to the conclusion that taking into account the images as
features directly is suitable in more specialized tasks, like the IRMA task, whereas it is not
suitable in less restricted tasks as the WANG task. We assume that this is due to the fact
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Figure 8.3: Different parameters for the time warp distance on the IRMA-1617 corpus
with an invariant feature histogram with f(X) =

√
X(4, 0) ·X(0, 8).

that the IRMA images usually contain one object (e.g. arm, leg, skull) from a limited set of
objects (body regions) whereas most images from the WANG corpus contain several objects
with varying positions and the variation in the appearance of different objects from the same
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Table 8.3: Error rates [%] for the IRMA-1617 database using different image compar-
ison measures.

Method IRMA WANG
Euclidean 17.7 55.1
IDM with thresholding 6.7 [Gollan 03] 22.1
Tangent distance [Keysers & Dahmen+ 03] 13.1 53.7
Tangent distance with thresholding [Keysers & Dahmen+ 03] 11.1 -

Table 8.4: Error rates [%] using region based features and different comparison mea-
sures for the WANG database.

comparison measure ER[%]
IRM 55.30
RM 49.80

type is very high. (e.g. old fashioned bus vs. modern red bus, children playing on the beach
vs. beach without any person).

Different comparison measures for region based descriptions of images

In Section 5.4 we proposed two methods for comparing region based descriptions of images.
Table 8.4 gives the results for these two methods using region based descriptions for the
WANG database. The region matching method using the Hungarian algorithm and thus
obtaining the perfect matching between the region descriptions is clearly better than the
greedy integrated region matching. Nonetheless, these error rates are not satisfactory and
probably are so bad due to the fact that segmentation still is an unsolved problem.

Different comparison measures for local features

In Section 5.3 we proposed three different methods for comparing images based on local
features. Here we compare results for these methods and additionally compare the results to
those obtained using the image distortion model with differently sized pixel windows.

Table 8.5 shows error rates for the IRMA database for different settings for local features
as well as for the image distortion model. We consider this comparison interesting since in
both cases subimages are compared. The image distortion model usually compares relatively
small subimages and takes deformation constraints into account. The local feature based
approaches usually compare relatively large subimages and no deformation constraints are
considered. In the usual local feature based approaches even alignments across images of the
same class are allowed. We present the results for histogram representation of local features
(cp. Section 4.9). The results show that using stronger constraints the results get better with
smaller subimages: the weakest constraints are in the method labeled “lf-l1o”. “lf-l1o” is the
common local feature approach without any constraints. For each local feature the nearest
neighbor from the large set of database local features is searched and it is counted how many
local features from which class are found. In the decision process it is not important from
which image the local feature originates. The method labeled “glfd” incorporates slightly
stronger constraints, which is the direct transfer from local features to image retrieval. Here,
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Table 8.5: Comparison of error rates [%] on IRMA using local features and image
distortion model.

Method 19×19 5×5 3×3
local features lf-l1o 13.0 28.8 31.7

glfd 26.0 22.9 32.8
lfd 26.8 23.1 28.4

image distortion model IDM (sobel) 13.3 8.7 6.7
IDM 11.5 11.4 12.7

local feature histograms with 64 bins 30.2 11.6 14.3
with 128 bins 28.0 10.1 12.6
with 256 bins 24.6 9.5 29.9
with 512 bins - 9.3 17.7
with 1024 bins - 10.1 23.2

for each local feature its nearest neighbor is searched from the huge set of database local
features and it is counted for each of the database images how many of its local features
are found. In the end the image is classified to be from the same class as the image with
the highest count. This method is equivalent to the common local feature approach if each
image is considered to constitute its own class, since alignments within other images from the
same class are not allowed anymore. Even stronger constraints are taken into account for the
method labeled “lfd”. Here, each local feature is forced to map to a local feature from the
other image. That is, the comparison is image-wise. Comparing two images, for each local
feature from the query image its nearest neighbor from the set of local features from this
particular database image is searched. The strongest constraints are considered for the image
distortion model (label “IDM”). Here the subimages from the query image are matched to
subimages from a database image from a certain range of positions. That is, the subimages are
not allowed to be matched to subimages too far away from the initial position in the images.
The results show that dropping constraints about global relationships of images requires more
information. That is, for the image distortion model each alignment is somehow related to
the neighboring alignments and thus it is not necessary to regard large subimages whereas
the local feature approach with an high amount of local information in each subimage works
quite well without the global constraints. Intuitively, the local features need a high amount
of local information to recover the lack of global information, or the missing knowledge about
position in the local feature approach is recovered from a high amount of information of the
neighborhoods.

8.2.2 Comparison of Different Features

In the last section we examined different comparison measures for the different types of
features, in this section different features are compared using suitable comparison measures.
Results for the WANG and the IRMA-1617 database are presented. The results are given as
error rates and PR-graphs. The experiments were done in a leaving-one-out manner. That
is, each image from the database was selected as query image and the nearest neighbor form
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Table 8.6: Error rates [%] using different features for the WANG database.

Feature Distance measure ER[%]
inv. feat. histogram f(X) =

√
X(4, 0) ·X(0, 8) JSD 15.9

color histogram JSD 17.9
Tamura histogram JSD 31.0
local feature histogram 256 JSD 32.5
image of size 32×32 Euclidean 55.1

Table 8.7: Error rates [%] using different features for the IRMA-1617 database.

Feature Distance Measure ER[%]
image of size 32×X IDM Sobel 6.7
local feature (5×5) histogram 512 JSD 9.3
32×32 Euclidean 17.7
Tamura histogram JSD 19.3
inv. feat. histogram f(X) = rel(X(0, 0)−X(0, 4)) JSD 22.6
inv. feat. histogram f(X) =

√
X(0, 0) ·X(0, 2) JSD 29.2

Fourier Mellin feature Euclidean 53.1

the remaining images was searched.
Exemplary results (error rates) we obtained using different features and suitable compari-

son measures are shown in Table 8.6 for the WANG database and Table 8.7 for the IRMA-1617
database. Complete tables can be found in Appendix B in Tables B.1 and B.2 for reference.
The results show that different tasks require completely different features. For the IRMA
database the best results are obtained using the image pixels as features as opposed to the
WANG database where these features yield poor results. Vice versa, the invariant feature
histograms yield very good results on WANG but perform poorly on IRMA. Figure 8.4 shows
the corresponding PR graphs.

Since it is often desired to create features invariant with respect to a certain amount of
transformation only, we implemented an “invariant” feature histogram considering only a sec-
tor of the circle for integration. It has to be noted that according to the theory this approach
does not lead to partially rotation invariant features (cp Section 4.4, p. 4.4). Results using dif-
ferent sectors are given in Table 8.8 and approve the theory that it is not feasible to use these
features. For these experiments invariant feature histograms with f(X) =

√
X(4, 0) ·X(0, 8)

were used and the tests were performed on the WANG database.
As it is well known that combinations of different methods lead to good results [Kittler 98],

an objective is to combine the presented features. However, it is not obvious how to combine
which features. To analyze the characteristics of features and which features have similar
properties, we perform a correlation analysis as described in Section 4.12. The resulting
graphs from multidimensional scaling are shown in Figure 8.5 and Figure 8.6 for WANG
and IRMA-1617 respectively. The points in these graphs denote the different features. The
distances between the points denote the correlations of the features. That is, points very close
together denote features that are highly correlated and points farther away denote features
with different characteristics.
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Figure 8.4: PR graphs for WANG and IRMA-1617 corresponding to error rates in
Tables 8.6 and 8.7.

The graphs show that there is a clear clustering of features. Both graphs have a large
cluster of invariant feature histograms with monomial kernel function. They result from
invariant feature histograms using different monomial kernel functions and histogram settings.
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Table 8.8: Error rates [%] using invariant feature histograms with partial rotation for
the WANG database with f(X) =

√
X(4, 0) ·X(0, 8).

angle ER[%]
360◦ 15.9
270◦ 16.1
180◦ 16.2
90◦ 16.6

image features
inv. feat. histograms
inv. feat. vectors
texture features
Gabor histograms
LF histograms
color histograms
inv. feat. histograms (X-X)
region features

Figure 8.5: Results from Multi-dimensional scaling for WANG features.

Also, the graphs show clusters of local features, local feature histograms, and Gabor feature
histograms. The different texture features do not form a cluster. This suggests that they
describe different textural properties of the images and that it makes sense to use them in
combination.

8.2.3 Image Retrieval Using Different Databases

In this section we present results obtained using weighted combinations of features for different
databases. To obtain comparative results we optimize the settings on a given training database
and test the settings using a given testing database.
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Figure 8.6: Results from Multi-dimensional scaling for IRMA features.

IRMA database

The IRMA-3879 corpus is a good example to show how parameters are optimized and tested:
We optimize the settings on the training database using a leaving one out evaluation and use
these settings to classify the test database. Table 8.9 presents results for different training and
test situation. The first column gives a description of the used training method. Here “IDM
Sobel” means that no training was done at all, but the only used features are images scaled
to the height 32 and compared using the image distortion model with Sobel values. Also, for
“wi = 1.0” no training was done, but all extracted features are used with equal weights. In
the remaining lines the settings were optimized on the training data using a greedy algorithm:
“wi ∈ {0, 1}” means that the features were weighted with either 0 or 1, this is also known
as feature selection. “wi ∈ {1, . . . , 10}” offers more flexibility the weights can be any integer
between 0 and 10. The second column gives error rates for the training data. The parameters
were optimized with respect to this error rate. It is interesting that the image distortion
model alone is better than a combination of all features. It can be seen that the performance
increases as the degree of freedom increases. The third column gives error rates for the testing
data. The fact that better error rates on the training data implicate better error rates on the
testing data shows that the parameters are not overfitted to the training data. Where ranges
are given several parameter settings obtained identical best results on the training data and
the ranges denote the varying error rates on the testing data for these different settings. The
table also shows that feature selection only is not sufficient to increase the recognition rate
but more flexibility is needed here. In both cases where more flexibility was given, the results
are improved in comparison to the base line result using the image distortion model alone.
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Table 8.9: Results for different training and testing situations on the IRMA-3879
database. (Ranges in the last column denote different parameter settings
with optimal result on training data.)

L1O ER[%] on ER[%]
Training training data test data
IDM Sobel 7.5 7.2
wi = 1.0 9.2 9.1
wi ∈ {0, 1} 7.5 7.3-9.1
wi ∈ {0, . . . , 10} 6.6 6.3-7.0

Note that this base line result in fact is very good as exactly this method obtains nearly the
best results for the smaller IRMA-1617 corpus.

For these experiments the following features were available: 32×32 thumbnails compared
with Euclidean distance, 32×X thumbnails compared with image distortion model distance,
two different Tamura texture histograms compared with Jensen Shannon divergence, Tamura
texture images compared with Euclidean distance, three different invariant feature histograms
with monomial kernels compared with Jensen Shannon divergence, one invariant feature his-
togram with relational kernel compared with Jensen Shannon divergence, invariant feature vec-
tors compared with Euclidean distance, global texture descriptors compared with Euclidean
distance, and image sizes compared with Euclidean distance. In Table B.3 the error rates for
all of these features are given for the 8 classes and for the 26 classes task.

To be able to compare these results to the results obtained earlier on the smaller IRMA-
1617 database, Table 8.10 gives error-rates for this database together with results published
in other works results obtained in this work are given in the lines labeled with “Feature
selection”. For these experiments a set of 36 different features for each image was used. The
features used were selected in a greedy manner. That is, first each feature was tested apart,
then the best of these features was taken, and all other features were tested together with
this feature, and so forth.

Using this method to optimize the parameters for the leaving-one-out classification, leads
to an error rate of 4.8% on the IRMA-1617 corpus which is the best obtained error rate so far.
To check whether these parameter set is overfitted to the data, we also applied this method
in an eight-fold cross validation experiment. That is, we trained the used feature set on seven
eighth of the data and classified the remaining eighth using these parameters. The error
rate of 6.1% shows that the parameters were overfitted to the data. Nonetheless, the result
of 6.1% is an improvement in comparison to the error rate obtained with image distortion
model alone. Bootstrap method [Efron & Tibshirani 93] showed that this is an improvement
on the 11% level.

For these experiments the following features were available: four different Gabor his-
tograms, twelve different local feature histograms, ten different invariant feature histograms
with monomial kernel, one invariant feature vector, one invariant feature histogram with re-
lational kernel, two different thumbnails of the image, Gabor features, two different types of
local features, two different Tamura texture feature histogram, a Tamura texture image, a
global texture descriptor, the image size, and a Fourier Mellin feature.

Further analysis of the results for the IRMA-1617 corpus has been done. Figure 8.7
shows the PR-graphs for the 6 IRMA-1617 classes apart. The graphs show that the retrieval
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Table 8.10: Error rates [%] obtained on the IRMA-1617 database.

Method ER[%]
Pseudo 2D hidden Markov model [Gollan 03] 5.3
Image distortion model [Gollan 03] 6.7
Local features & tangent distance [Kölsch 03] 7.4
Extended tangent distance [Keysers 00] 8.0

Feature selection (cross validation) 6.1
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Figure 8.7: Class wise PR-graphs for the six IRMA classes.

performance for an image is class dependent. Different factor have an impact on this. First,
different types of images may be differently hard to distinguish, e.g. the difference between
a skull and a hand image image is quite clear whereas the difference between spine and an
abdomen images is not so obvious. Another very important factor is the size of the classes.
Given a query image from a larger class, the probability to find images from the same class is
higher than for a smaller class. In this database the class “chest” contains 43% of the images,
and the class “abdomen” contains only 7% of the images.

WANG database and UW database

Similar experiments to those performed on the IRMA databases were carried out using the
WANG database and the UW database (cp. Sections 7.2 and 7.6). That is, we optimized the
parameters for the one database and tested this setting on the second database. Results for
these experiments are given in Table 8.11.

The lines in this table denote the parameter trainings performed. The first line “wi = 1.0”
means that all features available were used with equal weights. The second line means that
the features used were selected from the MDS graph in Figure 8.5 such that the features are
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Table 8.11: Results for different training situations for the WANG and UW
databases.

ER[%] ER[%]
Training on WANG UW
wi = 1.0 12.7 12.2
MDS graph 16.0 13.9

WANG (9.9) 13.5
WANG (sel) (10.9) 13.8

UW database 15.1 (9.4)
UW database (sel) 16.2 (10.2)

as different as possible. In this case we selected 32×32 thumbnails, local feature histograms,
invariant feature histogram with monomial and relational kernel, global texture descriptors,
region features, and Tamura texture histograms. The lines “WANG” and “UW database”
give the error rates for experiments where the parameters were optimized on the databases
and the lines “WANG (sel)” and “UW database (sel)” give error rates for experiments where
the parameters were optimized on the databases but the weights were restricted to 0 and 1.

The results show that in both cases (transfer from WANG to UW database and vice versa)
the parameters are overfitted to the training data for all training cases. When optimizing the
setting on the WANG database, either with selection or unrestricted, the error rate improves
strongly compared to the error rate when just using all features with equal weights, but the
error rate on the UW database deteriorates strongly. The same applies to the case when
optimizing the parameters on the UW database and testing on the WANG database. This
shows that this training overfits the parameters to the training data. This overfitting is so
clearly due to the fact that these two databases are not very similar and thus need different
settings.

For these experiments the following features were available for both databases: five in-
variant feature histograms with monomial kernel with different settings, one invariant feature
histogram with relational kernel, an invariant feature vector, a 32 × 32 thumbnail, local fea-
tures of size 19× 19 from the 32× 32 thumbnails, local feature histograms with 128 and 256
bins, the global texture descriptor, a Tamura texture histogram and a region description of
the images.

WANG database and COREL subset

Since the databases WANG and UW database differ quite strong in their characteristics we
also tried to transfer trained parameters from WANG to the COREL subset (cp. Section 7.3).
Results for these experiments are given in Table 8.12. The line “wi = 1.0” gives results where
all available features were used with equal weights. The lines “WANG” and “Corel subset”
give results for parameters optimized on these databases respectively. From these results it
can be seen that it is possible to transfer the features and weightings for image retrieval from
one database to another if the databases are adequately similar because for both training
cases the results not only improve on the training database but also on the testing database
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Table 8.12: Error rates [%] for different training situations for the WANG and Corel
subset databases.

ER[%] ER[%]
Training on WANG Corel subset
wi = 1.0 13.3 21.7

WANG (12.0) 21.6
Corel subset 13.2 (20.5)

Table 8.13: Error rates [%] for different training situations for the WANG subsets.

Training on WANG even WANG odd query odd on even query even on odd
wi = 1.0 14.4 17.4 16.4 13.6

WANG even (10.6) 16.4 14.8
WANG odd 13.2 (13.2) 12.8

in comparison to the case where all features were used with equal weights.

For these experiments the following features were available: two different invariant feature
histograms with monomial kernel, an invariant feature histogram with relational kernel, an
invariant feature vector, and a Tamura feature histogram.

To emphasize the fact that the settings for image retrieval are transferable from one task
to another if the databases are sufficiently similar, an experiment with even more similar
databases was done. We subdivided the WANG database into 2 parts of 500 images each,
one part consisting of all images with even numbers, the other consisting of images with
odd numbers. Thus, each of these parts consisted of 10 classes with 50 images in each class.
Results for different training situations with the WANG subsets are given in Table 8.13. The
top line gives results for the case that all features are used with equal weights, the other two
lines give the results for training of the weights on the two parts of the database. The first
two columns show the error rates if leaving one out is used on the databases, the other two
columns give the error rate if one database is used to query the other. That is, classifying
one database using the other as training data. In all cases training of the parameters on
one database improves the results for the other database and for both query experiments in
comparison to the case where all features are used with equal weights. Thus it is suitable
to optimize parameters for the database if the expected query images are similar to those
contained in the database.

For these experiments the following features were available: five different invariant feature
histograms with monomial kernel, an invariant feature histogram with relational kernel, an
invariant feature vector, local feature histograms with 128 and 256 bins, 32× 32 thumbnails
of the images, a global texture descriptor, a Tamura texture feature histogram, and a region
descriptor of the images.
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Table 8.14: Average normalized ranks R̃ank for the MPEG-7 database for different
settings.

Method R̃ank

InvFeatHisto f(X) =
√

X(4, 0) ·X(0, 8) 0.040
InvFeatHisto & relFeatHisto 0.034
wi = 1.0 0.032
MDS selection 0.032

MPEG-7 database

For the MPEG-7 database a set of 15 images was selected in [Siggelkow 02] and for each of
these images the set of relevant images was manually determined. For these experiments it
does not make sense to give precision values as the low number of images from each group
(between 3 and 14) lets the values decrease very fast. Also, to give error rates is not suitable
for a test set of 15 images only. Additionally, the error rate is 0% due to the fact that the
query images are contained in the database.

For comparison of different methods we give a graph of Recall plotted vs. the number
of images returned in Figure 8.8 and average normalized ranks R̃ank in Table 8.14. The
results show that the base method, using an invariant feature histogram with monomial kernel
alone (“InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8)”), can be improved by adding other features.

To use the invariant feature histogram with relational kernel additionally (“InvFeatHisto
& relFeatHisto”) improves the results strongly. To use all available features (“wi = 1.0”)
improves the result further and to use a reasonable feature set (“MDS selection”) yields the
best result. The experiments using only the invariant feature histograms were presented in
[Siggelkow 02] and were repeated for this work to be able to compare them.
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Table 8.15: Error rates [%] obtained on the ZuBuD database using different methods.

L1O ER[%] on
Method training data ER[%]
[Shao & Svoboda+ 03a] 13.9
[Obdrzalek & Matas 03] 0.0

wi = 1.0 7.3 15.7
Weights optimized on training data (3.9) 10.4

For all these experiments, available features were: two invariant feature histograms with
monomial kernels different settings, an invariant feature histogram with relational kernel, an
invariant feature vector, the global texture descriptor, 32 × 32 thumbnails, and the Tamura
feature histogram. For the MDS selection one invariant feature histogram with monomial
kernel, the invariant feature histogram with relational kernel, the Tamura feature histogram,
and the global texture descriptor were used. The thumbnails were not used as they did not
obtain good results for the WANG database and the second invariant feature histogram was
not used as one invariant feature histogram should be enough. Probably it would be possible
to obtain even better results when training the weights on this data but this would result in
a parameter set valid for exactly this task only.

ZuBuD database

As the ZuBuD database is subdivided into a training and a testing database, it is easily possi-
ble to train and test parameters. Comparison results are presented in [Shao & Svoboda+ 03a]
using local invariant feature descriptors and in [Obdrzalek & Matas 03] using local affine
frames. The comparison results are given together with our results in Table 8.15. The line
“wi = 1.0” gives error rates for the case that all features extracted are used with equal
weights and the line “Weights optimized on training data” shows results where the feature
weightings were optimized for the training data using a leaving-one-out approach. The results
are better than those presented in [Shao & Svoboda+ 03a] but worse than those presented
in [Obdrzalek & Matas 03]. In [Obdrzalek & Matas 03] the settings are optimized on this
database as they tested various parameters and only one parameter setting obtains this re-
sults.

CalTech database

Another task which is closely related to content based image retrieval is the classification of
complex scenes. One such task is the CalTech database (cp. Section 7.5). Here, three different
tasks are considered, each consisting of a two class decision problem whether the object of
interest is depicted in the image or not. In Table 8.16 we present results we obtained using the
features presented in this work without incorporation of special domain knowledge or complex
models like those proposed in [Fergus & Perona+ 03] and [Weber 00]. The results show that
each of the three tasks can be solved better with a combination of simple features than
with a complex model. This implies that the task can be regarded as “too easy” for complex
recognition tasks as the global image similarity is already sufficient to obtain very good results.
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Table 8.16: Equal error rates [%] on the CalTech database.

Method airplanes faces motorbikes
32×32 24.0 15.0 17.4
[Weber 00] 32.0 6.0 16.0
[Fergus & Perona+ 03] 9.8 3.6 7.5
Tamura feature 1.6 3.9 7.4
combination of features 0.8 1.6 8.5

The line “32×32” gives an absolute baseline error rate. This error rate was obtained using
a nearest neighbor classifier for images scaled to 32×32 pixels. The line “Tamura feature”
gives the error rate for a nearest neighbor classifier using only the Tamura texture histogram
and the line “combination of features” uses a combination of Tamura features and invariant
feature histograms.

In [Fei-Fei & Fergus+ 03] experiments on the same data are made, yielding error rates
slightly worse than those presented in [Fergus & Perona+ 03] but the amount of used training
data was reduced enormously. Here, the authors use one to five training images only.

8.3 Performance Evaluation for
Clustering Visually Similar Images

Evaluation of clustering algorithms is a task which was addressed before. A common way
to measure the quality of a partitioning of a data set is the Rand index [Jain & Dubes 88,
Saporta & Youness 02]. It is based upon the number of pairs from the same class belonging
to the same cluster. The Rand index is a number between 0 and 1 where 0 means that the
clustering is bad, and 1 means that the clustering is identical to the original partition.

To calculate the Rand index, it is necessary to calculate the contingency table. That is,
given two partitionings P = {p1, . . . , pN} and P ′ = {p′1, . . . , p′M} the M ×N matrix C with
Cnm = |pn ∩ p′m| is calculated. Given this matrix the Rand index R is computed as
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Cnm, and C is the number of images clustered.

8.4 Results for Clustering Visually Similar Images

In this section we present the results we obtained with the clustering application. For the
Google database we present some exemplary results. For this database it is not possible to
give quantitative results as we do not have information which images have to be in a cluster
together. To give quantitative and comparable results we also applied the algorithms to the
WANG and the COIL database.
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Figure 8.9: Results from Google image search for query “cookies”, unprocessed.

8.4.1 Clustering the Google Images

Figure 8.10 shows the result of clustering the 20 first results from Google image search queried
with “cookie”. Cluster 1 contains only images with people, cluster 2 contains images of edible
cookies and some drawings, cluster 3 contains images not fitting into any other cluster, and
cluster 4 contains screenshots. Though the partitioning is not a perfect one, as cluster 3
contains images which could be from the other clusters, it is obviously an improvement over
an unsorted display as depicted in Figure 8.9.

Figure 8.11 shows the result of clustering the first 25 results from Google image search
queried with “aircraft”. Also here, visually similar images are together in one cluster.

8.4.2 Clustering the WANG & COIL Images

To be able to quantify the results from clustering images we chose the WANG database,
where we know the reference partitioning into 10 clusters and the COIL-100 database which
is divided into 100 classes. To compare our results to the results from other groups we also
take a 20 class subset of COIL-100 database (cp. Section 7.10).

In both cases the results improve strongly by adding features. Another interesting results
is that the results from the LBG clustering algorithm are better than those obtained using k-
means clustering, though LBG clustering is provided with less information about the number
of clusters. This is very clear for the complete COIL-100 database. We assume that the
k-means algorithm is sensitive to the initial partition. Thus, the LBG clustering algorithm
seems more robust when using a high number of clusters. Another remarkable result is the
fact that our methods outperform the results presented in [Käster & Wendt+ 03] though they
tested a lot of parameter settings for each of their algorithms and the results cited are the best
results obtained in their work. That is, the parameters used are trained on the testing data for
their work. Whereas our methods were not specially optimized to the task. The only setting
changed was the number of clusters for k-means, the number of splits for LBG clustering
and the features used as shown in the tables. For the k-means algorithm the correct number
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Figure 8.10: Results from Google image search for the query “cookies” clustered using
the LBG clustering algorithm.
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Figure 8.11: Results from Google image search for the query “aircraft” clustered
using the k-means clustering algorithm.

of cluster centers was given, and for the LBG clustering the number of splits was set to the
minimum allowing for the right number of clusters. These results leads us to the conclusion
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Table 8.17: Results for clustering WANG.

Rand-Index
Database Method/Feature LBG k-means
WANG

(1) Invariant feature histogram 0.46 0.47
(2) Relational invariant feature histogram 0.22 0.24
(3) Tamura histogram 0.25 0.27

(1) & (2) 0.43 0.53
(1) & (3) 0.48 0.54
(1) & (2) & (3) 0.57 0.58

Table 8.18: Results for clustering COIL.

Database Method/Feature Rand-Index
COIL 20

Results from other works
[Käster & Wendt+ 03] k-Means 0.53
[Käster & Wendt+ 03] CLARA 0.54
[Käster & Wendt+ 03] PAM 0.55
[Käster & Wendt+ 03] hierarchical 0.62

LBG k-means
(1) Invariant feature histogram 0.64 0.67
(2) Relational invariant feature histogram 0.53 0.63
(3) Tamura histogram 0.45 0.63

(1) & (2) 0.83 0.74
(1) & (3) 0.83 0.76
(1) & (2) & (3) 0.79 0.82

COIL 100
(1) Invariant feature histogram 0.53 0.67
(2) Relational invariant feature histogram 0.48 0.63
(3) Tamura histogram 0.51 0.63

(1) & (2) 0.54 0.74
(1) & (3) 0.65 0.76
(1) & (2) & (3) 0.64 0.82

that the features presented are well suited to this task.
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Chapter 9

Conclusion and Perspectives

Conclusion

In this work a broad variety of features for content-based image retrieval was presented,
investigated, and experimentally evaluated. This work gives a review of features proposed for
image retrieval and refines several of them. An emphasis was placed on the invariant feature
histograms. All the features presented were used for content-based image retrieval on a wide
variety of databases to evaluate the different discrimination performances of these features.
For the first time, quantitative results are given for a wide variety of databases using different
image retrieval methods. Experiments to determine the optimal set of features for different
image retrieval tasks were carried out and the characteristics of the different features were
analyzed using an empirical correlation analysis.

For the invariant features we investigated the extension to scaling and to partially rotation
invariant features. Both extensions did not improve the retrieval performance, which is in
accordance with the theoretical prediction.

To analyze the features various dissimilarity measures were implemented, refined, and
tested, as different features require different comparison methods. As well as a large amount
of features was introduced and presented, we gave a broad overview of different comparison
measures for the different types of features.

An important part of this work was the implementation of a flexible image retrieval system,
capable of managing large amounts of different features and distance measures. The system is
a fully automatic system, that is, it is presented with a query image and without any further
information the query is evaluated.

To measure the performance of the system an appropriate performance measure had to be
determined. Several different performance measures were evaluated and compared using an
empirical correlation analysis. This analysis showed that most of the performance measures
are indeed highly correlated and thus the error rate was selected as performance measure
to compare the different image retrieval setups since it is a well known method in object
recognition and it is easily computable.

The experiments showed that the connection between image retrieval and image recogni-
tion is in fact a very close one. All the methods that improve the results in the one task
also improve the results in the other task. On the one hand, the high flexibility of the image
retrieval system implemented allowed for using many of the classification methods known for
image retrieval. On the other hand, the features proposed for image retrieval were used for

81



classification.
The experiments show that the selection of features for an image retrieval task strongly

depends on the images involved. One important aspect is to use a selection of features
accounting for the different properties of the images as there is no feature capable of covering
all aspects of an image. The experiments show that for color images of a general type (e.g.
photographs of arbitrary scenes) a combination of the following features is suitable:

• invariant feature histograms

• Tamura texture histogram

• local features or local feature histograms

• Gabor features

For gray images from a more limited domain (e.g. radiographs) the invariant features do not
obtain good results but instead the pixel values of the images are very important.

Experiments to find a good feature set revealed that it is suitable to search for an optimal
set of weightings and features if the training database is very similar to the testing database
used for the actual retrieval task. However, this is not suitable to search for an optimal setting
when the databases differ significantly. In this case it is best to calculate a reasonable set of
features and use all of these with equal weight.

Application of the presented features is not limited to image retrieval tasks, but the in-
sights are adaptable to other tasks as well, for example for classification. Another application
where the features were used is clustering of visually similar images. Since many image search
engines are based on text retrieval, these image search engines are not suitable for all tasks.
With the methods presented, it is possible to enhance the results from text based image
search engines. We presented an approach to improve text based image search engines using
the proposed features and some clustering algorithms. That is, given a set of images, the
features are extracted and a clustering algorithm is applied to present the user with a set of
images that can be browsed more easily.

We investigated the connection between local features and the image distortion model
and found that local features recover the lacking restriction with respect to deformation
constraints by a higher amount of local information. This was proven experimentally for the
local feature approach with very small local features and for the image distortion model with
large subimages.

Perspective

At this point of the work, still some questions remain unanswered and many ideas remain
untested and need to be investigated. It would be interesting to see the results of other image
retrieval systems using the same databases. One step in this direction is already in progress
as the authors of the GNU Image Finding Tools (GIFT) are experimenting with the IRMA
database in the context of the MedGIFT project.

Another desired application is to use the methods presented to accelerate and ease the
task of classification of images to be included into the IRMA database. Here, the images to
be classified by radiologists are taken as query images to the already classified images and
the nearest neighbors for those are returned together with their classification to allow the
radiologist selecting the best fit and refine the classification if necessary.
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As the image retrieval system as it is realized now has to keep all data necessary for the
retrieval process in memory the size of the database to search is restricted by the amount of
memory available. For the future, database support is desirable.

A future aim for content-based image retrieval surely is to go from appearance based image
retrieval to semantics based image retrieval. That is, the images should be retrieved based on
the objects contained in the scenes, the acts depicted or, if necessary, e.g. the names of the
persons shown. For semantic retrieval a complete understanding of the images is necessary.

Similar demands for image understanding techniques are in the task of automatic annota-
tion. Here the objective is to take a picture and automatically generate a textual description
of its contents. To get a satisfactory result, image understanding is necessary as well.

From the fact that most of the works cited are from the last five years and image retrieval
as it is understood now, is a quite new area of research it can be seen that content-based
image retrieval is an active area of research. The still increasingly growing amount of digitally
available pictures will enforce further research.

Another very important task is the creation of a well-documented standard test database
for content-based image retrieval and fixed testing criteria to be able to compare different
image retrieval systems in a quantitative way as it is already common in textual information
retrieval for years. A first starting point for this is given in this work, but further research,
larger databases, and better annotations and relevance criteria still have to be found.

For the analysis of complex scenes some of these features offer possibilities to be integrated
into a holistic model as proposed in [Keysers & Dahmen+ 03].
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Appendix A

Software Documentation

In this chapter we give an overview of the software developed in the context of this work. First
a list of software which has been used to create the software, the data, and this document is
given and then we introduce the software developed.

In the course of this work many freely available programs have been used: Linux as
operating system, X and sawfish window manager as graphical desktop environment, gcc
compilers and python to write programs, libpng and libjpeg for reading image files, libANN
for efficient approximative nearest neighbor search, GetPot for parsing of command lines, qiv,
xv, ImageMagick and The Gimp for viewing and manipulating images, Emacs, XEmacs and
Vim for writing programs, scripts, and this thesis, and LATEX and xfig for typesetting this
thesis. In the following a list of the software developed in the context of this work is given
together with a short description for each program.

A.1 FIRE Framework

FIRE (Flexible Image Retrieval Engine) is a framework for content based image retrieval. It
consists of a server part implemented in C++ and a client part implemented in python. The
server and the client communicate over network sockets by a simple line-oriented protocol.

fire

The server of fire can work in different modes. The most important mode is server mode.
In server mode, a client is able to connect via network socket to the server and change its
settings and retrieve images from a database. Other modes available are distance file mode,
performance evaluation mode, and query performance evaluation mode.

In distance file mode a file with all distances between all image pairs from the database
is created. This is necessary for efficient searching of the best parameter set. In performance
evaluation mode, the system queries itself in a leaving one out manner for each image from the
database and returns the results, calculates performance evaluation measures and averages
those over all images. In query performance evaluation mode the retrieval performance for a
given setting is measured with query images that are not contained in the database.

Invocation of fire is done as follows:
fire (-s | -perf | -distanceFile <filename> | -qperf) [options]
with
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-s [port] starts fire in server mode. By default the socket 12960 is used, but a different
port can be specified.

-distanceFile <filename> starts fire in distance file mode. The distance file is written to
the specified file.

-perf starts fire in performance evaluation mode.

-qperf starts fire in query performance evaluation mode.

For each of these modes the following options are available. In some cases some options are
obligatory:

-filelist <filename> specifies the file list describing the database to be loaded by fire
(obligatory in distance file mode, performance evaluation mode, and query performance
evaluation mode).

-results <number> specifies the number of results returned for each query (default: 9).

-distN <distname> sets the distance measure used for the N-th file (N starting with 0,
obligatory in distance file mode, performance evaluation mode, and query performance
evaluation mode for at least one N, otherwise no useful result is obtained). For a list of
available distance measures see Table A.1.

-weightN set the distance measure used for the N-th file (N starting with 0, defaults to 1 if
N-th distance is set, 0 otherwise).

-queryFileList <filename> to specify the file list describing which files to use in query per-
formance evaluation mode (obligatory in query performance evaluation mode, ignored
otherwise).

-ROCoutfile <filename> if specified, in query performance evaluation mode, a file with
distances to nearest neighbors from each class is written for each query. This is necessary
to obtain ROC (Receiver Operating Characteristic) curves. (ignored in any mode apart
from query performance evaluation mode).

fire.py and fireadm.py

fire.py and fireadm.py are web front ends to the fire server. Both are implemented in
python as cgi-scripts and communicate with the server using a TCP socket. The difference
between fire.py and fireadm.py is that the latter allows for changing several parameters as
the used distances, the used weights, the used database, and the number of results. Default
server, default port, and directory for temporary data can be modified easily by changing
some variables in the program.

A.2 Clustering Framework

The clustering framework is a set of two programs to cluster images into visually similar
groups. There is a main program written in C++ and a small web front end written in
python executing the main part.
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clustertest

clustertest is the main clustering program. It reads images from a database and clusters
them. clustertest takes the following parameters:

-c <clusteralgorithm> to select the cluster algorithm used. em and kmeans are available
at the moment.

-d <distancemeasure> to select the distance measure used to compare images and to com-
pare images with cluster centers. For a list of available distance measures see Table A.1.

-h to give a short help

-dummy if this parameter is given, no input data is read, but some data is generated and
clustered. This is convenient to test cluster algorithms

-jf <filename> if this parameter is given, the specified text file containing the data is
read. The file has to be an ASCII file of very simple format used at the Lehrstuhl
für Informatik 6 for internal data.

-rgb <filename> if this parameter is given, the specified filelist is read. If additionally the
-suffix option is given, only a subset of the available feature files is read.

-suffix=<suffix1:suffix2:...:suffixN> using this parameter it is possible to specify the
features used from a database description file.

-noAnalyse by default, a set of cluster performance evaluation measures is computed. If this
parameter is used, this analysis is omitted.

-testAnalyser if this parameter is specified, after clustering and giving the performance
evaluation measures some test cases for the performance measures are generated and
analyzed.

-noRearrange by default, after clustering the data is rearranged such that the data points
are sorted by distance to the cluster center. If this parameter is specified this step is
omitted.

Parameters only applicable if -c em is given

-splitMode <split mode> selects the split mode. Available options: allSplit(default),
largestSplit, varianceSplit.

-disturbMode <disturb mode> selects the center disturb mode. Available options:
varianceDisturb (default), meanDisturb, meanDisturb2, and constDisturb.

-poolMode selects the averaging mode for the cluster variances.
Available options: clusterPooling, dimensionPooling, and noPooling (default).

-dontSplitBelow <number> specifies the smallest cluster size which may be split. If a cluster
has less members than this, it is not split (default: 10).

-iter <number> specifies the number of reestimation iterations between two splits (default: 10).
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-minObs <number> specifies the number of data points which have to be in a cluster. If the
cluster has less members it is deleted (default: 4).

-maxSplit <number> specifies the maximum number of splits (default: 4).

-stopWithNClusters <number> if this option is set, the algorithm stops splitting when the
specified number of clusters is reached.

-epsilon <value> specifies the epsilon used for disturbing the cluster centers (default: 0.1).

Parameters only applicable if -c kmeans is given

-nOfClusters <number> specifies the number of clusters to be calculated (default: 10).

-iterations <number> specifies the number of reestimation iterations (default: 10).

cloogluster.py

cloogluster.py is a very simple web front end for clustertest. It reads a list of available
databases and provides a graphical interface to clustertest. clustertest is started and the
output is parsed to present the clusters to the user in a convenient way.

Nearly all options of clustertest can be accessed easily from this interface. Paths and
environment setup can easily be adjusted.

A.3 Feature Extraction Tools

In this section the programs developed for feature extraction are briefly described. All the
programs are able to read jpeg and png image files when images are loaded and read gzipped
text files when text files are read.

extractColorHisto

extractColorHisto is a program to create simple color or grey histograms from images.
extractColorHisto is invoked by:

extractColorHisto [-steps <number>]
(-pseudocolorhisto|-greyhisto|-mdcolorhisto) filename

The options mean:

-steps <number> specifies the number of bins for the resulting histogram.

-mdcolorhisto specifies that the given image is read as color image and a multi dimensional
histogram is created. The value of -steps specifies the number of steps per dimension
here, i.e. -steps 8 results in a 512 bin histogram from an RGB image.

-pseudocolorhisto specifies that the image is read as color image, and one histogram is
created for each color layer. -steps specifies the number of bins per color layer here.

-greyhisto specifies that the image is read as gray value image. A gray value histogram
with the number of bins specified by -steps is extracted.

The output is written to a file with the same name as the input file concatenated with
.pseudomdhisto, .greyhisto, or .mdhisto, respectively.
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Table A.1: Available dissimilarity measures.

Symbol Description Identifier
d2(·, ·) Euclidean distance euclidean
d1(·, ·) L1 distance l1
dJSD(·, ·) Jensen Shannon divergence jsd
dKLD(·, ·) Kullback-Leibler divergence kld
dχ2(·, ·) χ2-distance chisquare
dhis(·, ·) histogram intersection histogramintersection
dEMD(·, ·) earth movers distance emd
dtw(·, ·) time warp distance with Euclidean timeshift
dtw(·, ·) time warp distance with L1 timeshiftl1
dlf (·, ·) local feature distance localfeatures
dt(·, ·) tangent distance tangent
drd(·, ·) relative deviation reldev
drbd(·, ·) relative bin deviation relbindev
dt(·, ·) tangent distance for histograms histotangentdist
dqhrm(·, ·) quantized hungarian region matching regiondistv2
dirm(·, ·) greedy region matching irm

integrated region matching
df (·, ·) fidelity fidelity
dF (·, ·) fidelity based distance measure oneminusfidelity
d√1−F (·, ·) fidelity based distance measure sqrtoneminusfidelity
dlog(2−F )(·, ·) fidelity based distance measure log2minusfidelity
darccos F (·, ·) fidelity based distance measure arccosfidelity
dsin F (·, ·) fidelity based distance measure sinoneminusfidelity
didm(·, ·) image distortion model idmdistance
didm(·, ·) image distortion model (with Sobel) idmsobel

vote counting for local features globallocalfeaturedistance.

extractTamuraTextureFeature

extractTamuraTextureFeature extracts Tamura texture features as described in Section 4.6.
It is invoked by

extractTamuraTextureFeature [options](-color|-grey) <filename>

Available options are:

-suffix <suffix> to specify a suffix for the output file (default: .tamurafeature)

-saveTextureImages to specify that the texture image is saved. By default it is not saved.

-textureimagesuffix to specify the suffix for the texture image file. (default: .tamura.png).

The -color and -grey switches select whether the input image is read as color or grey image.
The output histogram is written to a file with the same name as the input file concatenated
with the suffix.
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extractaspectratio

extractaspectratio is a program to write the size of the image to a file. Invocation is done
with

extractaspectratio [options] -file <filename>

Available options are:

-suffix <suffix> to specify a suffix for the output file (default: .ar)

The file given with -file is read as image and the size is written to a file with the same name
concatenated with the given suffix.

extractglobaltexturefeature

extractglobaltexturefeature is a program to extract the texture feature described in
Section 4.7. Invocation is done by

extractglobaltexturefeature [options] (-color|-grey) <filename>

Available options are:

-suffix <suffix> to specify a suffix for the output file (default: .globtexturefeat)

The file given by <filename> is read as color or gray image depending on the option and
the output is written to a file with the same name concatenated with the suffix. The main
part of this program is courtesy of the IRMA project and was developed by Boris Terhorst
[Terhorst 03].

extractinvariantfourierfeature

extractinvariantfourierfeature is a program to extract a Fourier Mellin feature as de-
scribed in Section 4.4.3. The experiments have not been done with this program, but with an
implementation in MatLab offering higher flexibility. Invocation of this program is done by

extractinvariantfourierfeature -file <filename>

The given file is read as gray image, the Fourier Mellin transformation is applied and the
result is written to a file with the same name concatenated with .fouriermellin.

extractinvfeathisto

extractinvfeathisto extracts invariant feature histograms as described in Section 4.4.1.
Invocation is done by

extractinvfeathisto [options] (-frgb|-fgrey|-rel) <filename>

Available options are:

-suffix <suffix> to specify the suffix of the output file. (default: .rgbfeat if -frgb,
.greyfeat if -fgrey, and .relhisto if -rel.
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-featurefunction <featurefunction> to specify the feature function used. Available fea-
ture functions are

• X01X20 uses f(X) =
√

X(0, 1) ·X(2, 0) (default).

• X01X100 uses f(X) =
√

X(0, 1) ·X(10, 0).

• X01-X100 uses f(X) = X(0, 1)−X(10, 0).

• hsvparse*:X1=x1:Y1=y1:X2=x2:Y2=y2 uses f(X) =
√

X(x1, y1) ·X(x2, y2)
for HSV images.

• parse*:X1=x1:Y1=y1:X2=x2:Y2=y2 uses f(X) =
√

X(x1, y1) ·X(x2, y2).

• parse3x:X1=x1:Y1=y1:X2=x2:Y2=y2:X3=x3:Y3=y3

uses f(X) = 3
√

X(x1, y1) ·X(x2, y2) ·X(x3, y3).

• parse-:X1=x1:Y1=y1:X2=x2:Y2=y2 uses f(X) = X(x1, y1)−X(x2, y2).

-steps <steps> specifies the number of steps for the created histogram. This is the number
of steps per dimension. That is, for a color image a histogram with <steps>3 bins is
created and for gray images <steps> bins are created.

-samples <samples> specifies the number of samples taken for Monte Carlo integration. If
not specified integration is not done by Monte Carlo integration but exact.

-scalingStart <value> specifies the smallest scale factor to use.
(default: 1.0=original size).

-scalingMulti <value> specifies the factor by which the scale factor is multiplied each
iteration (default: 1.1).

-scalingStop <value> specifies the largest scale factor to use (default: 1.0=original size).

-rotationAngle <value> specifies the rotation angle for integration. (default: 360=full
circle)

With -frgb the input image is read as color image and a multi dimensional histogram is
created, with -fgrey the input image is read as gray image and a one dimensional histogram
is created. With -rel color or gray does not matter and a three dimensional histogram is
created of the relational histograms. To obtain scale invariant features, the image size and the
feature function used have to be considered. It is necessary to choose the scaling parameters
such that the smallest image considered is smaller than the support size of the function, and
for the largest image considered it is necessary, that one pixel is larger than the support size
of the function. Let X be an image of size 384× 256, and let f(x) =

√
X(4, 0) ·X(0, 8). The

image has to be scaled from 8× 8 up to the eightfold of its original size: 3072× 2048.

extractinvfeatvec

extractinvfeatvec is a program to extract invariant feature vectors as described in Sec-
tion 4.4.2. It is invoked by

extractinvfeatvec [options] (-cvec|-gvec) <filename>.

Available options are
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-suffix <suffix> to specify a suffix for the output file
(default: .colorinvfeatvec/.greyinvfeatvec)

-samples <samples> specifies the number of samples taken for Monte Carlo integration. If
not specified integration is not approximative but exact.

-cvec specifies that the image is read as color image, -gvec specifies that the image is read
as gray image. Depending on this the resulting vector has a different number of entries: 44
for grey images and 132 for color images.

extractlfv2

extractlfv2 is a program to extract local features from images. It is invoked by

extractlfv2 [options] (-color|-gray) -img <filename>

Available options are

-winsize <number> specifies the size of the extracted local features. A value of n results in
local features of size (2n + 1)× (2n + 1).

-threshold <value> specifies the variance threshold to determine which local features are
extracted.

-nOfFeatures <number> specifies the number of local features to be extracted. If this is
specified, the option -threshold is ignored.

-subsampling <number> specifies the step size between two pixels considered. By default
this is 1 which means, that each pixel is considered.

-images if this is set, the local features are additionally saved as PNG images (default: not
set).

-padding if this is set, the image is padded to be large enough to allow local feature to be
extracted from each pixel. If this is not set local features are only extracted from the
center points (default: not set).

-suffix <suffix> this specifies the suffix for the output file containing the local features as
text.

em-segmentation

em-segmentation is the program to create region features as described in Section 4.10. It is
invoked by

em-segmentation [options] -file <filename>

Available options are

-suffix <suffix> to specify the suffix of the file where the region features are written to
(default: .regions).

-maxSplits <int> to specify the number of splits done in LBG clustering (default: 3)
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-iter <int> to specify the number of reestimation iterations between two splits (default:
10).

-minObs <int> to specify the minimal number of observations in a cluster. If a cluster
contains less observations it is deleted (default: 4).

-epsilon <double> to specify the epsilon used for splitting (default: 0.1).

-disturbMode <disturbMode> to specify the way of disturbing means while splitting. Avail-
able modi are: varianceDisturb (default), meanDisturb, meanDisturb2, constDisturb.

-poolMode <poolMode> to specify if and how variances are pooled in the cluster process.
Available options: clusterPooling, dimensionPooling, and noPooling (default).

-d <distance> to specify the used distance to compare pixel features (default: euclidean).
For a list of available distance measures see Table A.1.

-smoothRange <int> to specify the size of the smoothing operator in post processing

If this program is started, a segmentation is created and some data about the segments is
saved to an output file. The output file has the same name as the input image concatenated
with the given suffix. Additionally an image showing the regions is saved with the same name
concatenated with .png.

blobworld-matlab source

From http://elib.cs.berkeley.edu/photos/blobworld/ it is possible to download the sources
of the BlobWorld feature extraction. This is a MatLab program and we used it to generate
these features. Additionally a small program to convert the resulting MatLab files to a simple
text-based format has been developed.

lf-pca

lf-pca is the program to apply the PCA dimensionality reduction to a set of files with local
features or gabor features. It is invoked by

lf-pca [options] <filelist>

where <filelist> specifies the list of files containing local features to be processed. Available
options are:

-transform <filename> this options specifies that the PCA matrix does not have to be
estimated but is loaded from the specified file.

-saveto <filename> this options specifies, that the PCA matrix has to be estimated and
afterwards is saved to the specified file. This cannot be used together with -transform.

-outDim <number> specifies the dimensionality of the output data.

When this program is started, normally all files from the file list are read, the mean and
the covariance matrix from this data is estimated and transformed for PCA transformation
using singular value decomposition (SVD). Then the data is read again and transformed using
the matrix. The transformed data is saved into files with the same name as the input files
appended with .pca.
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dbpcatransform

dbpcatransform is a program to apply PCA dimensionality reduction to nearly any type of
feature. It is invoked with

dbpcatransform -toDim <dim> -filelist <filelist>

When the program is started it reads all files specified in the file list, calculates the covariance
matrices and the means for the different types of features, transforms these using SVD and
transforms the specified files. The output files are written to files with the same names as the
input files concatenated with .pca.

gaborize

gaborize is the program to extract Gabor features as described in Section 4.5. It is invoked
by

gaborize [options] filename

Available options are

-numpha <number> to specify the number of different phases used (default: 5).

-numfreq <number> to specify the number of different frequencies used (default: 5).

-threshold <value> to specify the local variance threshold for feature extraction
(cp. extractlfv2)

-winsize <number> to specify the window size for local variance calculation
(cp. extractlfv2)

-all to extract all gabor features. If this is specified -threshold, -winsize, and
-nOfFeatures is ignored.

-nOfFeatures <number> to specify the number of gabor features extracted.
Overrides -threshold.

-color or -grey To specify whether the image is a color or a gray image.

When the program is started the specified image is read, and Fourier transformed. Then
the Fourier transform is multiplied with different filters and retransformed. From these images
the Gabor feature vectors are extracted and saved to a file with the same name as the input
file with .gaborfeatures appended.
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Appendix B

Additional Tables

Table B.1: Error rates for different features on WANG
database. A selection from this table is presented and ex-
plained in Section 8.2.2.

Feature Distance ER
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) JSD 15.9

InvFeatHisto f(X) =
√

X(4, 0) ·X(0, 8) scaling JSD 16.1
InvFeatHisto f(X) = 3

√
X(2, 0) ·X(4, 4) ·X(0, 8) JSD 16.4

InvFeatHisto f(X) = 3
√

X(2, 0) ·X(4, 4) ·X(0, 8) L1 16.4
Color Histogram JSD 17.9
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) L1 18.2

InvFeatHisto f(X) =
√

X(0, 1) ·X(2, 0) JSD 18.3
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) L1 18.4

InvFeatHisto f(X) =
√

X(0, 1) ·X(10, 0) JSD 19.9
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) JSD 19.9

InvFeatHisto f(X) =
√

X(4, 0) ·X(0, 8) JSD 20.0
Color Histogram L1 21.0
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) L1 21.3

InvFeatHisto f(X) =
√

X(0, 1) ·X(2, 0) L1 23.2
InvFeatHisto f(X) =

√
X(0, 1) ·X(10, 0) L1 25.1

InvFeatHisto f(X) =
√

X(0, 0) ·X(30, 30) JSD 25.2
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) L1 25.5

InvFeatHisto f(X) =
√

X(0, 0) ·X(30, 30) L1 27.8
PseudoMDColor Histogram JSD 27.8
PseudoMDColor Histogram L1 29.0
Tamura Histogram JSD 31.0
Tamura Histogram L1 32.1
LF Histogram 256 JSD 32.5
LF Histogram 256 L1 34.2
LF Histogram 128 JSD 35.9
InvFeatHisto f(X) =

√
X(0, 1)−X(10, 0) JSD 36.5

LF Histogram 128 L1 37.0
continued on next page
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Feature Distance ER
LF Histogram 64 JSD 37.2
InvFeatHisto f(X) =

√
X(0, 0) ·X(4, 0) JSD 37.7

InvFeatHisto f(X) =
√

X(0, 0) ·X(4, 0) L1 38.9
InvFeatHisto PCA(f(X) =

√
X(4, 0) ·X(0, 8)) Euclidean 39.0

LF Histogram 64 L1 40.7
PCA(Color Histogram) Euclidean 43.7
ColorInvFeatVec Euclidean 44.9
InvFeatHisto f(X) = X(0, 1)−X(10, 0) L1 46.9
PCA(InvFeatHisto f(X) =

√
X(0, 1) ·X(10, 0)) Euclidean 47.7

PCA(InvFeatHisto f(X) =
√

X(0, 1) ·X(2, 0)) Euclidean 47.8
PCA(InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8)) Euclidean 47.8

Gabor Histogram 256 JSD 48.2
PCA(InvFeatHisto f(X) =

√
X(0, 0)X(30, 30)) Euclidean 49.3

Gabor Histogram 128 JSD 49.9
PCA(InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8)) Euclidean 50.2

PCA(InvFeatHisto f(X) =
√

X(4, 0) ·X(0, 8)) Euclidean 50.7
PCA(InvFeatHisto f(X) =

√
X(0, 2) ·X(4, 4) ·X(8, 0) Euclidean 51.0

Gabor Histogram 256 L1 51.2
PCA(PseudoMDColor Histogram) Euclidean 51.3
Global texture feature Euclidean 51.4
Gabor Histogram 128 L1 51.7
Gabor Histogram 64 L1 51.8
Gabor Histogram 64 JSD 52.8
Regions (max 4, smooth 5) irm 54.3
32x32 Euclidean 55.1
Regions (max 8, smooth 10) irm 55.3
32x32, gray Euclidean 56.1
Regions (max 4, smooth 10) irm 56.1
PCA(Tamura histogram) Euclidean 56.3
PCA(ColorInvFeatVec) Euclidean 56.7
PCA(32x32) Euclidean 62.5
PCA(InvFeatHisto f(X) =

√
X(0, 0) ·X(4, 0)) Euclidean 68.8

PCA(InvFeatHisto f(X) =
√

X(0, 1)−X(10, 0)) Euclidean 71.5
PCA(Global texture feature) Euclidean 73.3
local features glfd 87.5
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Table B.2: Error rates for different features on IRMA-1617
database. A selection from this table is presented and ex-
plained in Section 8.2.2.

Feature Distance ER
32x32 IDM Sobel 6.7
LF(5x5) histogram 512 JSD 9.3
LF(5x5) histogram 256 JSD 9.5
LF(5x5) histogram 128 JSD 10.1
LF(5x5) histogram 64 JSD 11.6
LF(3x3) histogram 256 JSD 11.7
LF(3x3) histogram 128 JSD 12.6
LF(19x19) lf-l1o 13.0
LF(3x3) histogram 64 JSD 14.3
LF(3x3) histogram 512 JSD 17.7
32x32 Euclidean 17.7
Tamura histogram JSD 19.3
Gabor features glfd 20.6
Tamura histogram L1 20.9
32x32 Tamura histogram L1 21.3
InvFeatHisto f(X) = rel(X(0, 0)−X(0, 4)) JSD 22.6
LF(5x5) glfd 22.9
LF(5x5) lfd 23.1
LF(3x3) histogram 1024 JSD 23.2
Gabor histogram 256 JSD 24.4
LF(19x19) histogram 256 JSD 24.6
32x32 Tamura image Euclidean 24.6
Gabor histogram 256 JSD 25.4
Gabor histogram 128 JSD 25.6
Gabor histogram 256 JSD 25.7
Gabor histogram 256 L1 25.8
LF(19x19) glfd 26.4
InvFeatHisto f(X) = rel(X(0, 0), X(4, 0)) L1 26.9
Gabor histogram 128 L1 27.0
LF(19x19) histogram 128 JSD 28.0
LF(3x3) lfd 28.4
LF(5x5) lf-l1o 28.8
InvFeatHisto f(X) =

√
X(0, 0) ·X(0, 2) JSD 29.2

Gabor histogram 64 JSD 29.3
InvFeatHisto f(X) =

√
X(0, 0) ·X(0, 2) L1 29.9

InvFeatHisto f(X) =
√

X(0, 0) ·X(4, 0) JSD 30.1
LF(19x19) histogram 64 JSD 30.2
InvFeatHisto f(X) =

√
X(0, 0) ·X(4, 0) L1 30.3

Image size Euclidean 30.4
Gabor histogram 64 L1 30.4

continued on next page
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Feature Distance ER
InvFeatHisto f(X) =

√
X(0, 0) ·X(0, 8) JSD 31.0

InvFeatHisto f(X) =
√

X(0, 0) ·X(0, 8) L1 31.2
LF(3x3) lf-l1o 31.7
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) JSD 31.9

InvFeatHisto f(X) =
√

X(0, 0) ·X(0, 32) L1 32.1
InvFeatHisto f(X) =

√
X(4, 0) ·X(0, 8) L1 32.1

InvFeatHisto f(X) =
√

X(0, 0) ·X(0, 16) JSD 32.2
LF(3x3) glfd 32.8
InvFeatHisto f(X) =

√
X(0, 0) ·X(0, 16) L1 33.0

InvFeatHisto f(X) =
√

X(0, 0) ·X(0, 32) JSD 33.9
InvFeatHisto f(X) =

√
X(0, 1) ·X(2, 0) L1 38.1

InvFeatHisto f(X) = 3
√

X(0, 2) ·X(4, 4) ·X(8, 0) JSD 41.5
InvFeatHisto f(X) = 3

√
X(0, 2) ·X(4, 4) ·X(8, 0) L1 44.2

InvFeatVector Euclidean 52.9
Fourier Mellin Feature Euclidean 53.1
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Table B.3: Error rates for training and classification task for different features on
IRMA-3879 database.

Feature Distance L1O ER ER
on training data test with train

8 classes 26 classes 8 classes 26 classes
Image 32×32 Euclidean 16.7 17.9 20.8 21.7
RelFeatHisto JSD 20.2 19.5 24.9 25.4
InvFeatHisto JSD 39.7 38.6 44.2 43.3
InvFeatHisto (scaling) JSD 39.5 39.0 43.8 44.0
Image size JSD 33.2 57.3 38.8 63.8
InvFeatVec Euclidean 82.4 82.3 98.9 98.8
Tamura Histogram JSD 19.0 18.6 23.1 23.3
Tamura Image Euclidean 23.8 25.5 26.4 27.1
small Tamura Histogram JSD 21.5 22.9 25.4 27.0

Table B.4: Error rates for different dissimilarity measures on WANG database for
invariant feature histogram with f(X) =

√
X(4, 0) ·X(8, 0). A seleciton

of this table is presented and explained in Section 8.2.1.

Disssimilarity measure ER
dlog(2−F )(·, ·) 15.6
d√1−F (·, ·) 15.6
d√1−F (·, ·) 15.6
dJSD(·, ·) 15.9
dχ2(·, ·) 16.5
drbd(·, ·) 17.4
dhis(·, ·) 18.4
d1(·, ·) 18.4
drd(·, ·) 25.6
dt(·, ·) 27.6
d2(·, ·) 28.3
darccos F (·, ·) 31.5
dsin F (·, ·) 31.5
dKLD(·, ·) 78.4
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Table B.5: Error rates for different dissimilarity measures on IRMA-1617 database for
local feature histograms of 5× 5 local features with 512 bins. A selection
of this table is presented and explained in Section 8.2.1.

Dissimilarity measure ER
dhis(·, ·) 8.3
d1(·, ·) 8.3
dχ2(·, ·) 9.1
dJSD(·, ·) 9.3
dlog(2−F )(·, ·) 9.5
d√1−F (·, ·) 9.5
d√1−F (·, ·) 9.5
drd(·, ·) 11.7
drbd(·, ·) 12.0
d2(·, ·) 14.2
dtw(·, ·) 14.2
darccos F (·, ·) 45.8
dsin F (·, ·) 45.8
dKLD(·, ·) 74.1
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Index

L1 distance, 36
PR-area, 60
P (1), P (20), P (50), P (NR), 60
P (P = R), 60
R (P = 0.5), R (100), 60
χ2 distance, 36
Rank1, R̃ank, 60
rel-operator, 23
k-means, 5

affine transformation, 20
alignment, 39

Bhattacharyya distance, 37
bin-by-bin comparison measure, 35–37
BlobWorld, 11, 14, 32, 43

CalTech database, 54
circular moran autocorrelation function, 30
CIRES, 12
classification, 7, 14, 49
cloogluster, 46
clustering, 46
co-occurrence matrix, 29
coarseness, 27, 29
COIL database, 57
color histogram, 18
content-based image retrieval, 3
contingency table, 78
contrast, 28
convolution theorem, 26
Corel database, 51
correlation, 61
cross-bin comparison measure, 37

differential approach, 20
directionality, 28
discriminant function, 8
distance

L1, 36

χ2, 36
Bhattacharyya, 37
cross-bin, 37
earth movers, 38
Euclidean, 36, 38, 40, 44
Mahalanobis, 44
Manhattan, 36
matrix, 43
Minkowski, 36
quadratic form, 38
tangent, 40
time warp, 38

dynamic programming, 39

earth movers distance, 38
entropy, 29
Euclidean

distance, 36, 40
motion, 20

fidelity, 37
Flexible Image Retrieval Engine, 45
Fourier Mellin transformation, 24
fractal dimension, 29
fuzzy histogram, 18

Gabor
feature histogram, 27
features, 25
filter, 25

GIFT, 12
global texture descriptor, 29
Google

database, 56
image search, 5

histogram, 18
color, 18
comparison measures, 35–40
fuzzy, 18
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Gabor features, 27
intersection, 36
invariant feature, 23
local feature, 31
Tamura feature, 29

human perception, 1
Hungarian algorithm, 43

image
clustering, 5
comparison measures, 40–41
distortion model, 41
retrieval, 3

integrated region matching, IRM, 43
invariant feature, 19

differential approach, 20
histogram, 23
integral approach, 20
normalization, 20
vector, 24

IRMA, 12
database, 53

Jensen Shannon divergence, 37

Karhunen-Loève transformation, 32
kernel

monomial, 23
relational, 23

Kronecker Delta, 18
Kullback-Leibler divergence, 37

LBG-clustering, 6, 32
local features, 30

histogram, 31
log-polar coordinates, 25

Mahalanobis distance, 44
Manhattan distance, 36
Minkowski distance, 36
monomial, 22
Monte Carlo integration, 22
MPEG-7 test set, 56
multidimensional scaling, 34

nearest neighbor, 8
NN-ER, 60
normalization, 19

principal component analysis, PCA, 32

QBIC, 11, 29
quadratic form, 38
query-by

example, 3
sketch, 3
text, 3

Rand index, 78
region

alignment, 44
based features, 32
description, 32
matching

integrated, 43
with quantization, 43

relational function, 23
relative

bin deviation, 36
deviation, 36

relevance feedback, 3, 45
negative, 3, 45
positive, 3, 45

SIMBA, 12
SIMPLIcity, 12, 32, 43
spatial gray-level difference statistics, 29

Tamura feature, 27
coarseness, 27
contrast, 28
directionality, 28

tangent distance, 40
test data, 7
time warp distance, 38
train data, 7

UW database, 54

VIPER, 12

WANG database, 51

Zurich Building database, 55
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