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Abstract
We present a new technique that employs support vector
machines and Gaussian mixture densities to create a gen-
erative/discriminative joint classifier. In the past, several
approaches to fuse the advantages of generative and dis-
criminative approaches were presented, often leading to
improved robustness and recognition accuracy. The pre-
sented method directly fuses both approaches, effectively
allowing to fully exploit the advantages of both. The fu-
sion of SVMs and GMDs is done by representing SVMs in
the framework of GMDs without changing the training and
without changing the decision boundary. The new classi-
fier is evaluated on four tasks from the UCI machine learn-
ing repository. It is shown that for the relatively rare cases
where SVMs have problems, the combined method outper-
forms both individual ones.

1. Introduction
Two major approaches to the classification of patterns are
known: generative and discriminative approaches. Both
have been successfully applied to many different problems
and both have their own advantages and disadvantages.

Generative approaches try to find an optimal representa-
tion of the original data by keeping as much information as
possible. They can be trained from partly labelled data and
normally allow for a reconstruction of the most likely pro-
totype for each modelled class. Generative methods can be
built very robustly. Discriminative methods require fully
labelled training data, can be applied very quickly and of-
ten show better recognition accuracy than their generative
counterparts. The biggest problem of many discriminative
approaches is that they are prone to overfitting, which re-
quires significant extra effort to be overcome, e.g. the max-
margin concept in SVMs is all about reducing overfitting.

Clearly, both approaches have their advantages and sev-
eral authors have tried to combine the approaches to ben-
efit from both. One common approach is followed in the
object recognition literature, the two worlds are fused in
a two-stage method: a generative model is used to create
a fixed length representation of the image, which then is
classified using a discriminative technique (e.g. [3, 4]).

A direct approach to joining the two principles is pro-
posed in [10] which allows to seamlessly blend from a
fully discriminative model to a fully generative model. In
[5], a discriminative, boosted model is modified to account

for reconstruction in addition to the discriminatory perfor-
mance and a clear performance boost for noisy data was
observed. In [9], the opposite approach is taken, where
boosting is performed with Gaussians as weak classifiers.
In many areas, such as speech recognition, discrimina-
tively trained Gaussian Mixtures are frequently used [11].

Among the discriminative models, support vector ma-
chines (SVMs) are popular in many domains. They are
easy to use and often obtain good results [13]. SVMs do
not model a probability distribution, and are thus not open
to the ideas presented in [10].

Despite the fact that SVMs are in general among the
most successful and best understood methods, where find-
ing a good set of parameters is relatively easy and standard
procedures are known (i.e. cross validation on the training
data), in some cases tuning the parameters of an SVM to
obtain optimal performance turns an SVM into “little more
than a glorified template matcher” [8]. This is in accor-
dance to the observation, that an SVM (with radial basis
function (RBF) kernel, which is probably the most com-
monly used kernel) in some cases has a large portion of
the training data as support vectors (SVs) and thus it de-
generates to a discriminatively weighted kernel densities
classifier. This degeneration can be interpreted as effec-
tively overfitting to the training data.

We present an approach that fuses an SVM with a gen-
eratively trained Gaussian Mixture Density (GMD) classi-
fier and thereby profits from the advantages of both tech-
niques. A close connection between Gaussian mixtures
and SVMs was already discussed in [14], but to the best
of our knowledge, the direct fusion of SVMs and GMDs
has not yet been investigated. To fuse the two approaches,
we first convert the SVM into a GMD with identical de-
cision boundary and then blend this GMD with another
(generatively trained) GMD to obtain a joint classifier.

Another way to fuse SVMs and GMDs is to compute
their individual posterior probabilities and combine these.
To obtain probabilities from an SVM, other approaches
have been proposed e.g. in [12, 15, 16]. The method pro-
posed here is not a late combination of two different classi-
fiers, but a unified framework, to fuse the two classification
methods into a single joint classifier.

2. Support Vector Machines
SVMs being a modern, well understood and widely used
classifier, directly predict the label of an observation. An
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SVM commonly discriminates between two classes: −1
and 1 using the decision rule

X 7→ sgn

(∑
vi∈S

αiK(X, vi) + α0

)
(1)

to classify the observation X where K is a kernel func-
tion, the vi are the support vectors (SVs) and the αi are the
corresponding weights, α0 is a bias term.

We consider the distance to the decision hyper-plane to
be proportional to a class-conditional emission probability,
i.e., we assume that given a class, the confidence for an
observation vector X which is far away from the hyper
plane is high, and conversely, that for each vector which
is close to the hyper plane, the confidence that this vector
comes from the class is low. Thus, we write

p(X|k) ∝
∑

vi∈Sk

kαiK(X, vi) + α0 (2)

where Sk is the set of SVs for class k, i.e., those SVs with
positive αi for class k = +1 and those with negative αi

for class k = −1.

3. Gaussian Mixture Densities
GMDs are a generative model, Bayes decision rule is used
for classification:

X 7→ arg max
k
{p(k|X)} (3)

= arg max
k

{
p(k)

∑
i

p(i|k)N (X|µki,Σki)

}
(4)

where class k is represented by Ik clusters, p(i|k) are the
cluster weights and N (X|µki,Σki) is the Gaussian repre-
senting the i-th cluster of class k with mean µki and co-
variance matrix Σki.

GMDs are trained using the EM algorithm to maximise
the likelihood

∏N
n=1 p(Xn|kn) [2] by starting with an ini-

tial Gaussian over all observations which is iteratively split
and reestimated until a certain number of densities is ob-
tained. Densities with too few observations are deleted to
ensure stable estimation.

4. Fusing SVMs and GMDs
As described above, SVMs are a discriminative classifier
and GMDs are a generative classifier. In the following, we
first describe how SVMs with RBF kernel can be repre-
sented in the form of GMDs without changing the decision
boundary and then describe how two GMDs can be fused
to profit from their individual advantages.
4.1. Approximating SVMs Using GMDs
Originally SVMs are designed to discriminate two classes.
We describe the transformation for the two-class case first
and then we extend this transformation to the multi-class
case.
Two-Class Case. It is known that SVMs and GMDs can
in principle model arbitrary decision boundaries and thus,
can theoretically represent the respective other without any
loss of accuracy or generalisation ability. This theoretical

feature, however does not pose any advantage as normally
the most difficult thing for a classifier is to find the model
parameters, and thus it is not clear how to benefit from
these theoretical equivalence here.

For SVMs with an exponential RBF kernel, a close sim-
ilarity between SVMs and GMDs can be observed. Start-
ing from the general form of the decision function, we give
straight-forward rules to transform one into the respective
other without changing the decision boundary.

The decision rule of a standard SVM (Eq. (1)), can be
rewritten, by inserting the RBF kernel, as

X 7→ arg max
k∈{−1,1}

{∑
vi∈Sk

kαie
(−γ||X−vi||2) + α0

}
. (5)

For comparison we give the decision rule of a GMM clas-
sifier, which is independent of the number of classes con-
sidered. Here, we use Gaussians with a globally pooled,
diagonal covariance σ2 and means µki.

X 7→ arg max
k

{∑
i

p(k)p(i|k)
(2πσ2)D/2

e

„
− 1

2
||x−µki||

2

σ2

«}
(6)

Now it can be seen, that Eq. (5) and (6) are identical ex-
cept for the α0 if the means µki and the SVs vi correspond.
In fact, a GMD can be transformed into an SVM (and vice
versa) by setting

kαi =
p(k)p(i|k)
(2πσ2)D/2

γ =
1

2σ2
µki = vi (7)

and α0 can be sufficiently well approximated by an addi-
tional density with arbitrary mean and very high variance
and a cluster weight proportional to α0.

Thus, the main difference between a GMD and an SVM
with RBF kernel is the optimisation criterion and the train-
ing method.
Multi-Class Case. The earliest used implementa-
tion for SVM multi-class classification is probably the
“one-against-the-rest” (also known as “one-against-all”)
method, which has been used to extent other binary clas-
sifiers to multi-class problems before [6]. Therefore, not
a single classifier is trained to discriminate between all
classes at once but a classifier is trained for each class to
discriminate it from all other classes and the decision is
drawn according to the scores from these individual deci-
sions. The decision rule in this case is:

X 7→ arg max
k

{ ∑
vi∈Sk

αkiK(x, vi) + αk0

}
, (8)

where the parameters for each class k are optimised in indi-
vidually considering the two-class problem where all com-
peting classes are considered to be from class−1 and class
k is considered to be class 1.

Here, the relationship to the GMD classifier is similar to
the two-class case, if this SVM is converted into a GMD,
each SV becomes a mixture mean, we assume a pooled, di-
agonal covariance matrix with identical entries for each di-
mension inversely proportional to γ and the cluster weights
are given through the weights αi of the SVs. The transfor-
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Figure 1. (a) a single density Gaussian classifier, the variance
is given by the ellipse and the mean is denoted by a small star
(b)-(d) support vector machines with (b) γ = 100, (c) γ = 10,
(d) γ = 2. White areas denote high probabilities for the red
class and dark areas denote high probabilities for the blue
class, the decision boundary is yellow and SVs are denoted
with green circles.

mation rules can be given analogously to those presented
in Eqs. (7). It is necessary to address the class-wise con-
stant bias terms αk0 which can be substituted by very dif-
fuse Gaussians (one per class) with an arbitrary mean and a
weight proportional to αk0. Negative weights αki are com-
pensated by adding respective densities to all other classes.

The same transformation can be applied if the SVM is
trained to jointly discriminate all classes as described in
[17] because the same decision rule is applied there and
only the parameter estimation is done differently.
4.2. Fusing SVMs and GMDs
Given two GMDs G1 and G2 (let t = 1, 2)
Gt = ((µt1 . . . µtI), (σt1 . . . σtI), (pt(1) . . . pt(I)) (9)

one trained using the EM algorithm for GMDs and the
other obtained by transforming an SVM, it is possible to
fuse both GMDs into one and arbitrarily fade between the
two. The new, joint GMD G′ is obtained as
G′ =

(
(µ11 . . . µ1I , µ21 . . . µ2J), (σ11 . . . σ1I , σ21 . . . σ2J),

(wp1(1) . . . wp1(I), (1− w)p2(1) . . . (1− w)p2(J))
)

where w is a weighting factor allowing to smoothly blend
between G1 (for w = 1) and G2 (for w = 0).

Since the cluster weights of G1 and G2 are normalised,
for 0 ≤ w ≤ 1 the cluster weights of the resulting GMD
G′ are also normalised.

The resulting decision boundary, now is chosen ac-
cording to a combination of the optimisation criteria of
the SVM, which optimises classification performance, and
the GMD, which optimises data representation. Thus, the
resulting decision boundary is not-optimal wrt. either of
these criteria, but according to some compromise of these.

In Fig. 1 an example GMD (1 density per class) and
three differently parametrised SVMs are visualised for
two-dimensional data. It can be seen that the SVMs have,
depending on the scale of the kernel γ, many SVs, which
is an indicator for possible overfitting. As will be exper-
imentally shown, overfitting of SVMs to the training data
is a problem in cases where the data is difficult to separate,
which commonly goes along with a very high numbers of
SVs. For GMDs, the number of parameters estimated can
be fixed by the user (i.e. fix number of densities), thus by
forcing the number of parameters to be small, overfitting
can easily be avoided.

In Fig. 2, the GMD from Fig. 1a is fused with the three
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Figure 2. Fusing the Gaussian classifier from Fig. 1a with the
SVMs from Fig. 1b-d using different weights. The decision
boundary is plotted as a yellow line.

Table 1. Overview of the datasets used, C number of classes;
N total number of vectors; D dimensionality of the vectors.

Dataset C N D

Diabetes 2 768 8
German 2 1,000 24
Heart† 2 270 25
Vehicle 4 846 18

†categorical features were expanded (original dim. 13)

different SVMs from Fig. 1b-d with different weights w
(w is the weight for the GMD obtained from the SVM).
The smoothing of the probability distribution and thereby
of the decision boundary can clearly be observed. The ef-
fect is best observed in the top row of Fig. 2, which shows a
combination of the SVM with γ = 0.01 (cp. Fig. 1b) with
the GMD (Fig. 1a). The before extremely bumpy deci-
sion boundary of the SVM is strongly smoothed and only
when the SVM gets relatively high weight a tendency to
overfitting can be observed. Similarly, the decision bound-
aries for the combinations with the other two SVMs are
smoothed when combined with the GMD.

5. Experiments
Experimentally, we evaluate the proposed method on four
datasets from the UCI machine learning repository1 [1].
An overview over the datasets used is given in Table 1.
These datasets were selected from the UCI repository by
selecting those where classification is difficult, i.e. those
where reported error rates are rather high. For all experi-
ments we normalised the mean and the variance of all fea-
tures to 0 and 1, respectively as recommended for the use
with SVMs.

First, we present the experimental results using only
SVMs and using only GMDs. We used libSVM2 with one-
against the rest training [7] and the common grid search
on 5-fold cross validation (11 values for C, 10 values for
γ) to determine the parameters γ and C for the SVM. The
results for the SVMs and the GMDs (with 1, 2, and 32

1http://archive.ics.uci.edu/ml/index.html
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://archive.ics.uci.edu/ml/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Table 2. Results using SVMs and GMDs. We give the result
for the SVM using the parameters determined on the data in
5-fold cross validation. For the SVM we also give the number
of SVs in percentage. For GMD classifiers, we give three re-
sults for each database, using 1, 2, and 32 densities per class,
respectively.

SVM GMD ER [%]

Dataset ER [%] SVs [%] 1d 2d 32d

Diabetes 29.9 50.0 28.6 30.5 24.7
German 24.5 54.4 24.0 26.5 30.0
Heart 25.9 56.0 22.2 22.2 27.8
Vehicle 60.2 50.7 53.8 49.1 35.1

Table 3. Results of fusing SVMs and GMDs with w = 0.5 .

ER [%]

Dataset 1 dens. 32 dens.

Diabetes 30.5 27.3
German 22.5 33.0
Heart 22.2 18.5
Vehicle 55.0 35.7

densities/class) are reported in Table 2.
It can be observed that the error rates are in general

quite high which shows that the selected tasks can be con-
sidered difficult. As expected, the SVMs decided to choose
a significant part of the training data as SVs and thus the
SVM is on the best way to overfitting. The GMDs mostly
have better results (on the test data) than the SVMs, al-
though the SVMs have far better error rates on the training
data (not reported here), which is an indicator for overfit-
ting effects.

The results of fusing the classifiers using the SVM and
GMDs with 1 and 32 densities are given in Table 3. For
these experiments, we set w = 0.5. For the german-task
and the heart task, the fused classifiers outperform their
individual components, for the diabetes-task and for the
vehicle-task, only the SVM is outperformed and the per-
formance is similar to the GMD alone. Not surprisingly,
for the vehicle- and diabetes-tasks the combination has
better results if more densities are used, because here the
GMDs were better with more densities. We assume that
thus effectively the overfitting of the SVM is smoothed
away by mixing with the GMD model. Informal experi-
ments showed that for each of these tasks, improvements
are possible by using different numbers of densities in the
GMD and by using different weights w in the fusion, these
results are omitted due to brevity constraints.

6. Conclusion
We presented a novel generative/discriminative classifier
consisting of fusing a generative GMD classifier and an
SVM with RBF kernel. We have shown that the com-
bined method is able to overcome overfitting problems of
the standard training procedure for SVMs on some tasks.

Concluding, we do not generally recommend to use the
presented technique for arbitrary problems but rather only

when the SVM alone suffers badly from overfitting prob-
lems (which may happen in strongly overlapping prob-
lems) or has a high number of SVs. For most tasks this is
not the case and SVMs are known to be a well-understood
and easily usable classification technique. However, the
tasks presented here are different from most tasks in that
respect as the SVMs here tend to overfit, i.e. choose a huge
amount of training samples as SVs.
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