
Efficient Approximations to Model-based Joint Tracking

and Recognition of Continuous Sign Language

Philippe Dreuw, Jens Forster, Thomas Deselaers, and Hermann Ney
Human Language Technology and Pattern Recognition Group

RWTH Aachen University, Aachen, Germany
<lastname>@cs.rwth-aachen.de

Abstract

We propose several tracking adaptation approaches to re-

cover from early tracking errors in sign language recog-

nition by optimizing the obtained tracking paths w.r.t. to

the hypothesized word sequences of an automatic sign lan-

guage recognition system. Hand or head tracking is usu-

ally only optimized according to a tracking criterion. As

a consequence, methods which depend on accurate detec-

tion and tracking of body parts lead to recognition errors in

gesture and sign language processing. We analyze an inte-

grated tracking and recognition approach addressing these

problems and propose approximation approaches over mul-

tiple hand hypotheses to ease the time complexity of the in-

tegrated approach. Most state-of-the-art systems consider

tracking as a preprocessing feature extraction part. Exper-

iments on a publicly available benchmark database show

that the proposed methods strongly improve the recognition

accuracy of the system.

1. Introduction

Hand tracking for sign language recognition is a chal-

lenging problem. Frequently, the hands are signing in front

of the face, overlap, and may temporarily disappear. In

early work on sign language recognition, the problem of

hand tracking is facilitated by using special gloves [1, 15].

Other systems require the user to start every gesture from a

predefined ‘home’ position [10].

However, the biggest problem with most work on sign

language recognition is that only the recognition of isolated

signs is considered [15,16]. In contrast to these works, here

we work on the recognition of continuous sign language.

For the recognition of sign language the hand is the part of

the image that is moving most [3, 18]. Most approaches

addressing the recognition of gestures and sign language

use a two-step procedure, where in the first step the hand

is tracked and in the second step the classification recogni-

tion is done [7, 11]. A problem with this approach is that

possible tracking errors from the first stage might be im-

possible to recover in the recognition phase and thus ideally

a joint tracking and recognition procedure is used to fuse

these steps. Here, we present a method that integrates track-

ing and recognition into one step which is computationally

very complex. Therefore, we present some approximations

to this method to reduce the computational demands.

In particular, our proposed rescoring and tracking path

adaptation can be applied to any tracking based features,

regardless of the chosen tracking method or the features ex-

tracted from those tracking regions.

Related Work. Tracking adaptation by learning has been

recently addressed e.g. based on a spatial-color mixture ap-

pearance model for particle filters [8, 17], or tracking by

model-building and detection as presented in [14]. Many

of the proposed tracking methods fail if hands are moving

abruptly such that the transformations between two frames

fall out of the learned or assumed range. Furthermore, the

model based approaches are rather detection-based meth-

ods, i.e. the resulting path is optimized on a frame-level.

Here, we propose a global and model-based path opti-

mization w.r.t. a word sequence. We present a recognition

framework that allows for fully integrated recognition and

tracking where the tracking decision is withheld until the

recognition phase and explicitly optimized according to rec-

ognizing a sentence rather than to optimize some heuristic

tracking criterion. Since the computational demands for the

proposed procedure are very high, we additionally propose

some approximations which greatly ease the computational

burden. Second, in sign language recognition, the lack of

available data [6, 16] is addressed by using virtual training

samples from the existing data by cropping several regions-

of-interest for each frame of a video sequence.

2. System Overview & Features

Sign Language Recognition. In a vision-based system,

tracking-based features have to be extracted at each time

step t = 1, . . . , T at unknown positions uT
1 := u1, . . . , uT
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Figure 1: Bayes’ decision rule used in ASLR with tracking frame-

work and feature extraction as a pre-processing step.

in a sequence of images XT
1 := X1, . . . , XT , with e.g.

xt = f(Xt, ut) a hand patch feature extracted at position

ut = (x, y) from frame Xt in the image observation se-

quence XT
1 .

In an automatic sign language recognition (ASLR) sys-

tem for continuous sign language, we are searching for an

unknown word sequence wN
1 , for which the temporal se-

quence of features xT
1 := x1, . . . , xT best fits to the trained

models (see Figure 1). Opposed to the recognition of dy-

namic (but isolated) gestures, we maximize the posteriori

probability Pr(wN
1 |xT

1 ) over all possible word sequences

wN
1 with unknown number of words N . This is modeled by

Bayes’ decision rule:

xT
1 −→ r(xT

1 ) = argmax
wN

1

{
Pr(wN

1 ) · Pr(xT
1 |w

N
1 )

}
(1)

where Pr(wN
1 ) is the a-priori probability for the word se-

quence wN
1 given by the language model (LM). Here, we

use a smoothed trigram LM [12]. Pr(xT
1 |w

N
1 ) is the prob-

ability of observing features xT
1 given the word sequence

wN
1 , referred to as visual model (VM).

The probability Pr(xT
1 |w

N
1 ) of observing the feature se-

quence xT
1 given a word sequence wN

1 is defined as the sum

over all possible hidden Markov model (HMM) temporal

state sequences sT
1 := s1, . . . , sT for this word sequence:

Pr(xT
1 |w

N
1 ) =

∑

[sT
1 ]

Pr(xT
1 , sT

1 |w
N
1 ). (2)

Assuming a first order Markov dependency, Eq. 2 can be

simplified as:

Pr(xT
1 , sT

1 |w
N
1 ) =

T∏

t=1

p(xt|st, w
N
1 ) · p(st|st−1, w

N
1 ). (3)

The optimal word sequence is found using maximum ap-

Figure 2: Examples of different hand patches extracted from track-

ing framework with their corresponding back-projections from

PCA space using a using a 1600×30 dimensional PCA matrix

proximation over all possible state sequences:

ŵN
1 = argmax

wN
1

{

p(wN
1 ) max

sT
1

T∏

t=1

{
p(f(Xt, ut)|st, w

N
1 ) · p(st|st−1, w

N
1 )

}
}

(4)

It is well-known that for natural languages the segmenta-

tion of a sentence into individual words is a non-trivial task

and thus sentences are recognized jointly without segmen-

tation into words [9]. Here, we follow this approach.

Visual Modeling. The ASLR framework and the features

used to achieve the experimental results are similar to those

presented in [4]. Each phoneme is modeled by a 3-state

left-to-right HMM with three separate Gaussian mixtures

and a globally pooled covariance matrix as emission mod-

els. The baseline system is Viterbi trained and uses a tri-

gram LM. We use appearance-based image and hand fea-

tures, i.e. thumbnails of video sequence frames, which can

be reduced by linear feature reduction methods like PCA or

LDA (see Figure 2). These features give a global descrip-

tion of all (manual and non-manual) features that have been

shown to be linguistically important.

To analyze the impact of the proposed rescoring

and adaptation methods within the emission probabilities

p(xt|st, w
N
1 ) in Eq. 3, we focus in the following sections

only on these low-level frame and hand based features in-

stead of possibly high-level features presented e.g. in [13].

Nevertheless, the achieved results in Section 5 even outper-

form other approaches on the same benchmark set.

2.1. Hand Tracking

To extract manual features, the dominant hand (i.e. the

hand that is mostly used for one-handed signs such as fin-

ger spelling) is tracked in each image sequence. Therefore,

a robust tracking algorithm for hand tracking is required.

Instead of tracking by detection, it is also possible to opti-

mize the tracking decision considering the full sequence us-

ing dynamic programming (DP) [3]. This has the advantage

to reduce tracking errors and the structure of the algorithm

allows for fully integrating this into the recognition process

(c.f. next section).

The DP tracking consists of two steps. In the first step the

recursion of the dynamic programming tracking is executed



to obtain scores D and backpointers B:

D(t, x, y) = max
x′,y′∈M(x,y)

{(D(t − 1, x′, y′)−J (x′, y′, x, y)}

+ d(x′, y′, x, y,Xt
t−1) (5)

B(t, x, y) = argmax
x′,y′∈M(x,y)

{(D(t − 1, x′, y′)−J (x′, y′, x, y)}

where M(x, y) is the set of possible predecessors of point

(x, y) and J (x′, y′, x, y) is a jump-penalty from point

(x′, y′) in the predecessor image to point (x, y) in the cur-

rent image (e.g., the Euclidean distance). The local score

function d(x′, y′, x, y,Xt
t−1) measures the movement of the

object to be tracked in the current frame.

In the second step, the traceback process reconstructs the

best path t → ut = (x, y) using the score table D and the

backpointer table B starting from time step T .

ut−1 = B(t, ut) with uT = argmax
(x,y)

{D(T, x, y)} (6)

with D(t, x, y) the total score for the best path of hand po-

sitions until time step t which ends in position (x, y). Using

this full traceback, the decision for a single frame automat-

ically depends on all preceding and succeeding decisions.

Using early tracebacks over ∆ frames (e.g. ∆ = 25), the

decisions for each frame only depend on the frames which

are considered in the same partial optimization. Opposed to

the work of [3], here we propose to use multiple distorted

tracebacks (c.f. Section 4) which are optimized later w.r.t. a

hypothesized word sequence.

2.2. Integrated Tracking and Recognition

As described above, conventionally, first the tracking is

performed leading to a sequence of hand positions and then

features extracted from these positions are used to do the

recognition. Ideally, the tracking path is chosen according

to hypothesized word sequences in the recognition phase

which would postpone the tracking decisions to the end of

the recognition phase and lead to tracking decisions optimal

w.r.t. the hypothesized word sequences.

To integrate the tracking into the recognition process

(i.e., the simultaneous optimization of a tracking path uT
1

w.r.t. a tracking criterion and a hypothesized word sequence

wN
1 ), image locations uT

1 and states sT
1 can be modelled as

hidden variables, leading to the following formulation for

the emission probabilities:

Pr(xT
1 |w

N
1 ) =

∑

[sT
1 ]

∑

[uT
1 ]

Pr(XT
1 , sT

1 , uT
1 |w

N
1 )

∝ max
[sT

1 ]
max
[uT

1 ]

T∏

t=1

[

Pr(Xt|st, ut, w
N
1 )

︸ ︷︷ ︸

emission prob

· Pr(st|st−1)
︸ ︷︷ ︸

state transition prob

·Pr(ut|ut−1, X
t
t−1)

︸ ︷︷ ︸

location transition prob

]

(7)

A problem with this integrated approach are resulting

time complexities. Let L be the number of active loca-

tions in an image during the tracking, W the size of the

vocabulary, T the length of the sequence in frames, and S

the number of active states in the recognition HMM. Then,

the complexity for a normal tracking is O(TL2) because

for each time frame each position and each position in the

predecessor frame has to be hypothesized (i.e., each tran-

sition). The time complexity for the normal search (using

unigram LM) is O(TWS), since for each time frame each

word is hypothesized in each state. Using bigram or trigram

LM, the complexity for the search is O(T [WS + W ]) and

O(TW [WS + W ]), respectively. Thus, the conventional

two-step tracking/recognition procedure has a complexity

of O(TWS + TL2) which is feasible.

In the combined approach, the complexity becomes

O(TWSL2) for the unigram and O(TL2[WS + W ]) and

O(TL2W [WS+W ]) for the bi- and trigram search respec-

tively, which is unfeasible for reasonably sized images.

Furthermore, obviously not each pixel in an image (let

e.g. L be 320·240=76,800) is a good candidate for a track-

ing center. In preliminary experiments we observed that,

even with a strongly pruned search space, either the run-

time is too high or the image search space has to be reduced

too strongly for accurate hand position tracking.

To ease the computational problems but stick to the

proposed integrated tracking and recognition approach we

present several approximations to this procedure in the fol-

lowing sections.

3. Virtual Training Samples

Due to the lack of data in video benchmark databases for

sign language recognition, some visual models contain only

a few observations per density. Even “one-shot” training is

necessary for singletons (c.f. Section 5). This results in too

sharp means which do not generalize well on unseen data.

However, for other pattern recognition problems it has

been reported that the usage of additional virtual training

samples (VTS) can significantly improve the system per-

formance [2]. Here, as only a region-of-interest (ROI) is

cropped from the original video frames, the amount of train-

ing data can be increased by VTS, i.e. ROIs extracted at

slightly shifted positions from the original ROI position.

The ROI cropping center (x, y), is shifted by δ pixels in x-

and y-direction. For δ = ±1, the training corpus is already

enlarged by a factor of nine.

The proposed virtual training samples generation can

be interpreted as distortion and adaptation on the signal

level. Each additional virtual training sample may lead to

a slightly different tracking path and thus effectively differ-

ent tracking paths are considered in training and testing.



Figure 3: Rescoring by n-best list rescoring or multiple hand hy-

pothesis are supposed to recover from tracking errors.

4. Rescoring and Path Adaptation

In Eq. 3, the emission probability p(xt|st, w
N
1 ) =

p(f(Xt, ut)|st, w
N
1 ) depends on the quality of the hand

tracking position ut and the extracted feature xt. The sys-

tem was trained with the path optimal w.r.t. the tracking cri-

terion in order to learn word dependent hand appearance

models. However in the recognition, we propose to rescore

over multiple hand hypotheses in order to adapt the given

path to a path being optimal w.r.t. the hypothesized word

sequence and their corresponding hand models.

Figure 3 shows a tracking path scheme over time and

space. Typically the path optimal w.r.t. the tracking scoring

criterion (blue lines) and the resulting n-best paths (green

lines) usually differ from the ground truth oracle path (red

line). It can happen that correct locations occur in glob-

ally non-optimal tracking paths, whereas the globally opti-

mal tracking path might have even worse positions for these

time stamps.

n-Best Tracking List Rescoring. An n-best tracking list

can be generated by tracing back multiple times over the

sorted score table D and the backpointer table B. Eq. 6

changes for i = 1, .., n as follows:

ut−1,i = B(t, ut,i) with uT,i = argmax
(x,y)/∈

{uT,1,...,uT,i−1}

D(T, x, y)

The tracking list which best describes the hypothe-

sized word sequence will be chosen. In speech recogni-

tion, this process is known as “acoustic rescoring” [9].

The visual model probability in Eq. 3 changes as follows:

Pr(xT
1 , sT

1 |w
N
1 ) =

T∏

t=1







max
i:uT

1 :=

(u1,i,..., uT,i)

{
p(f(Xt, ut)|st, w

N
1 )

}
· p(st|st−1, w

N
1 )







Tracking list rescoring is schematically shown in Figure 3

(from top-to-bottom). Figure 4 shows an example where we

visualized an n-best tracking list with 450 hand hypotheses.

By incorporating different tracking hypotheses in the recog-

nition, we allow to recover from tracking errors even for

Figure 4: n-best tracking list with 450 hand hypotheses in each

frame at different time stamps of a video sequence: the target ob-

ject, i.e. the right and dominant-hand, is always among the active

hypotheses tracking set. However, due to an abrupt movement of

the dominant hand, the best path w.r.t. the tracking criterion (yel-

low rectangles) would track the entering non-dominant hand.

objects where tracking failed miserably and thus e.g. con-

fusions of the hands can be resolved. This technique allows

the recognition to choose among a set of tracking path can-

didates.

Multiple Hand Hypotheses Rescoring. Instead of rescor-

ing with a set of n complete tracking paths, it is also possi-

ble to select multiple hand hypotheses among these: during

recognition at each time step t, a set of n possible hand

locations {ut,1, .., ut,n} is considered and selected depend-

ing on the hypothesized word sequence. The visual model

probability in Eq. 3 changes as follows: Pr(xT
1 , sT

1 |w
N
1 ) =

T∏

t=1

{

max
i=1,..,n

{
p(f(Xt, ut,i)|st, w

N
1 )

}
· p(st|st−1, w

N
1 )

}

Multiple hand hypotheses (MHH) rescoring is schemat-

ically shown in Figure 3 (from left-to-right). Opposed to

n-best tracking list rescoring, at each time step t, not a full

path but only a tracking position is selected. Compared to

the previous method, this effectively weakens the tracking

constraints and allows for a higher flexibility in choosing

alternative tracking position candidates in the recognition

phase at the expense of a possibly loss of path smoothness.

Path Distortion Model. Another possibility to obtain a

tracking path being adapted to the hypothesized word se-

quence is to locally distort within a range R a given tracking

path.

Figure 5 (a) shows an example where the hand tracking

failed: a small local tracking distortion (see Figure 5 (b))

can recover from tracking errors which results in better

hand hypotheses matching to the hypothesized visual mod-

els (i.e., better emission scores).

Furthermore, it is possible to penalize locations far away

from the original tracking path. Each distortion depends on

the currently hypothesized word (i.e. the trained hand mod-

els), which changes the visual model probability in Eq. 3 as

follows: Pr(xT
1 , sT

1 |w
N
1 ) =

T∏

t=1

{

max
δ∈{(x,y):

−R≤x,y≤R}

{
p(δ) · p(f(Xt, ut + δ)|st, w

N
1 )

}

· p(st|st−1, w
N
1 )

}

with p(δ) =
exp(−δ2)

exp(
∑

δ′ −δ′2)
.



(a) (b)

Figure 5: Rescoring by distortion: The distorted hand hypothe-

ses can be weighted by the distance to the optimal path (a). The

path optimal w.r.t. the tracking scoring functions (blue line) can be

distorted locally in the feature scorer (b).

Another possibility is to penalize w.r.t. trained hand po-

sitions (µx, µy) which can also be used for the proposed

MHH rescoring method.

The path distortion model prunes the search space start-

ing from a path being optimal to a tracking criterion in or-

der to obtain a distorted path according to the hypothesized

word sequence. Compared to the previous two methods,

here not several tracking hypotheses are considered but we

assume that the tracking may be inaccurate up to δ pixels

and allow for compensating tracking errors up to this range

in the recognition phase.

5. Experimental Results

For our experiments, we use a publicly available

database of 201 American Sign Language sentences per-

formed by 3 different signers, 161 are used for training and

40 for testing [4]. On the average, these sentences consist

of 5 words out of a vocabulary of 104 unique words. 26%

of the vocabulary words seen in training are singletons (i.e.

words which occur only once in the training corpus).

We use only unseen data from the test sentences for eval-

uation. As we are dealing with continuous sign language

sentences (instead of isolated gestures only), the recognition

experiments are evaluated using the word error rate (WER)

in the same way as it is done in speech recognition. The

WER represents the minimum number of deletion (DEL),

insertion (INS), and substitution (SUB) errors divided by

the total number of signs in the recognized sentence.

In order to analyze the proposed tracking rescoring

and adaptation methods, here we focus only on the us-

age of appearance-based hand features in contrast to full

appearance-based frame features, more complex tracking

features, and their combinations as proposed by the au-

thors of [4]. The baseline results for our proposed system is

shown in Table 1.

Rescoring results for n-best path rescoring over 350

paths (i.e. from best to 350th) are presented in Table 2.

For short tracking delays, which is good for near real-

time tracking, n-best tracking list rescoring consistently im-

proves the WER over the reference system, which uses only

Table 1: Baseline results using appearance-based features

Features DEL INS SUB errors WER %

Frame (32x32) 43 6 16 65 35.62

PCA-Frame (200) 40 9 18 27 30.34

Hand (32x32) 31 7 43 81 45.51

PCA-Hand (70) 40 10 21 49 44.94

Table 2: Rescoring results for n-best tracking lists and multiple

hand hypotheses (MHH) with different traceback delays ∆ and

predecessor search ranges M .

Delay ∆ WER[%]

M = ±1 M = ±10

1-best n-best MHH 1-best n-best MHH

Full 80.34 76.97 76.40 45.51 45.51 45.51

100 79.78 75.28 73.03 45.51 45.51 45.51

25 70.79 64.61 66.29 56.18 50.56 53.37

10 69.10 67.98 65.17 63.48 60.11 58.99

1 91.01 83.71 65.17 91.01 83.71 65.17

the best path. However, a full traceback with sufficiently

large search regions M outperforms short delays. No fur-

ther improvements are achieved for ∆ > 100 which corre-

sponds to the average length of the sentences. The best re-

sult is obtained for a predecessor search range of M = ±10
pixels in Eq. 5. This is the best setting for all delays ∆.

Rescoring results for multiple hand hypotheses (MHH)

on an n-best tracking list for n = 150 are presented in Ta-

ble 2. We observed that many paths recombine to one path

for a long or full traceback delay. Therefore short tracking

delays can be used to generate a larger path diversity. It can

be seen that multiple hand hypotheses outperform the stan-

dard approach and the n-best tracking list rescoring results

from Table 2 up to a short tracking delay of ∆ = 10 frames

(Section 2.1). However, the chosen tracking scoring func-

tions and delays led on the one hand to a large path diversity

but on the other hand to many wrong hand hypotheses (e.g.

the moving elbows), so that the optimal path w.r.t. the track-

ing criterion is also the best w.r.t. the WER.

Table 3 shows some rescoring results obtained with

a tracking path distortion model and different distortion

ranges and penalties. We used the squared Euclidean point

distance as distortion penalty. It can be seen that too large

distortions increase the WER, and that an additional distor-

tion penalty reduces the WER again for larger distortion. A

distortion range of R = 10 pixel with additional δ-penalty

is sufficient, larger values led to no further improvements.

The rescoring results using the path distortion model

in combination with virtual training samples are shown in

Table 4. The usage of additional training data by virtual

training samples (VTS) leads to improvements in all exper-

iments. The WER of 11.29% is the best result reported for

this data in the literature so far (17.98% in [4]).



Table 3: Rescoring results for a tracking path distortion model

with different distortion ranges R and δ-penalties.

Feature WER[%]

R = 0 R = 3 R = 5 R = 10

Hand (32×32) 45.51 41.51 34.27 41.03

+ δ-penalty — 38.02 34.27 35.96

PCA-Hand (70) 44.94 32.58 34.83 56.74

+ δ-penalty — 33.25 30.90 32.58

Table 4: Rescoring results using the path distortion model and vir-

tual training samples.

Features / Rescoring WER[%]

pixel values PCA transformed

Baseline VTS Baseline VTS

Frame 32×32 35.62 27.53 30.34 19.10

Hand (32×32) 45.51 20.79 44.94 15.73

+ distortion (R = 10) 41.03 16.29 56.74 12.92

+ δ-penalty 35.96 15.73 32.58 11.24

6. Conclusions

We presented several tracking rescoring and adaptation

methods to obtain an adapted hand tracking path with op-

timized tracking positions w.r.t. recognition instead of a

tracking criterion.

Different tracking rescoring methods showed large im-

provements. On the one hand, the proposed n-best path

rescoring and multiple hand hypotheses require short track-

ing delays in order to obtain a large diversity of the possible

tracking paths, and led so far to no improvements for the

used tracking method. On the other hand, the proposed path

distortion model yields large improvements.

More robust models were trained using virtual training

samples (VTS) easing the lack of data problem in vision

based sign language recognition. The VTS data improved

the system performance in all cases, and the proposed

method can be applied to any vision based system. In com-

bination with a path distortion model rescoring, the baseline

WER of 44.94% on the benchmark database was improved

to 11.29% WER, which is the currently best known WER

on the used database.

In particular, the proposed path distortion model can be

applied to any tracking based features (e.g. body part mod-

els), regardless of the chosen tracking method or the fea-

tures extracted from those tracking regions (e.g. color or

contour based). Interesting will be an iterative recognition

and re-training of the system using the model adapted track-

ing path, and an analysis and extension of the proposed

methods for e.g. body part features [14].
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