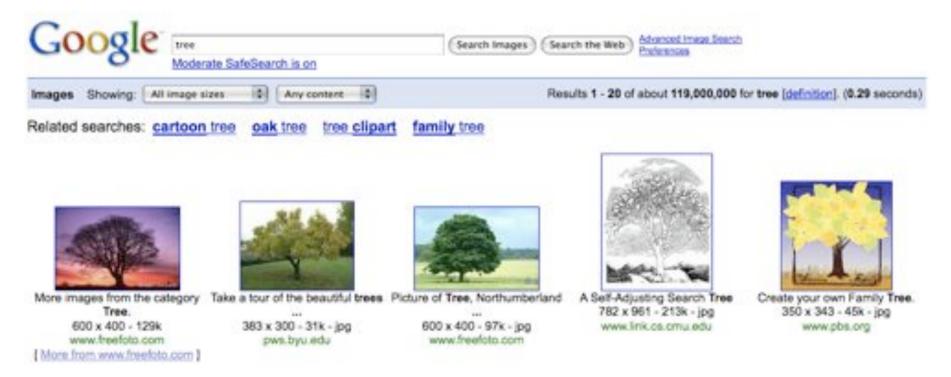
Combining Textual- and Contentbased Image Retrieval


Tutorial Image Retrieval
Thomas Deselaers, Henning Müller

Outline

- Why combination of text and images
- Late fusion
- Image Annotation and Textual Retrieval
- Direct fusion in the continuous approach
- Direct fusion in the discrete approach
- Query-based fusion (domain specific)
- Fusion by refining

Why Combinations?

- Textual and visual information are often orthogonal
- Content vs. context

Combination of Textual and Visual Image Retrieval

- Google Image Search, Flickr, Youtube, ...
 - Access visual content using textual searches
 - Using textual information associated with the images
 - Meta data
 - Tags
 - Figure captions
 - ...
- Textual and visual information are often orthogonal
 - Visual features can be used to find similar images
 - Textual information can be used to find "semantically" annotated images
 - Textual information will often fail, due to
 - Unannotated images (creating a hidden web)
 - Images annotated in a different language

Combination of Textual and Visual Image Retrieval

- Try to benefit from textual and visual information
- E.g. find an initial set of images using a textual search and then find similar images using visual search
- Find an initial set of images and regroup using the respective other technique (e.g. to obtain diverse results)

Example: Textual Query visual Refinement Microsoft LiveSearch Images

Announced on Dec 1st, 2008

Advantages of Text-based Retrieval

- Find images with semantic concepts
 - Object recognition is an unsolved problem in particular in largescale (number of concepts)
- Find images belonging to a certain event
 - E.g. show me all images from the US elections 2008
- Find images taken at a particular location
 - Although some researchers are trying to determine image location vision-based
- Many images are created with captions, description, tags, ...
 and are thus open to textual searches
 - And if someone took the effort to annotate images, why not use it?

Advantages of Visual Retrieval

- Search images without any information
 - e.g. possible to find images showing a particular person, given a suitable face detection and recognition
- Find similar images
 - E.g. find images with certain colours (sunset, ...)
 - E.g. find illicit uses of "my" images (for copyright holders)
 - find duplicates to clean up a set of images

Late Fusion of Images and Text

- For a database $\mathcal{B} = \{x_1, \dots, x_n, \dots, x_N\}$
- Given the result of a textual retriever, i.e. the scores for each of the images

$$(s_1^t,\ldots,s_n^t,\ldots,s_N^t)$$

And the scores of a visual retriever:

$$(s_1^v,\ldots,s_n^v,\ldots,s_N^v)$$

Fuse these into a joint result:

$$(s_1,\ldots,s_n,\ldots,s_N)$$

Late fusion

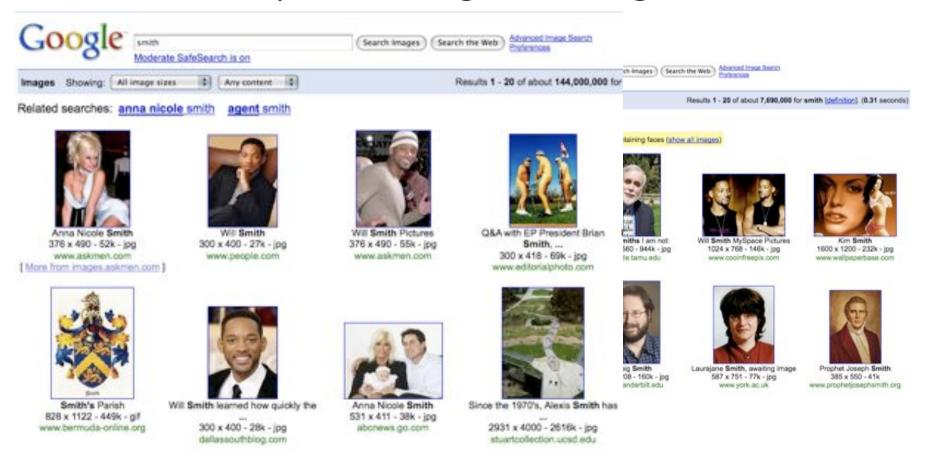
- Weighted sum:
 - Allows for arbitrary weighted combinations

$$s_n \leftarrow w_t s_n^t + w_v s^v n$$

$$w_v = 1 - w_t, w_t \in [0, 1]$$

- Minimum:
 - An image is similar if it is similar by text or content

$$s_n = \min\{s_n^t, s_n^v\}$$

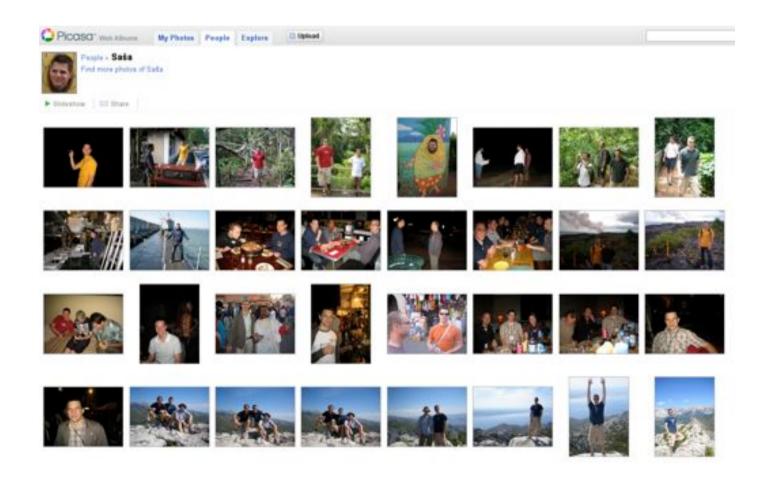

- Maximum:
 - An image is only similar if it is similar by text and content

$$s_n = \max\{s_n^t, s_n^v\}$$

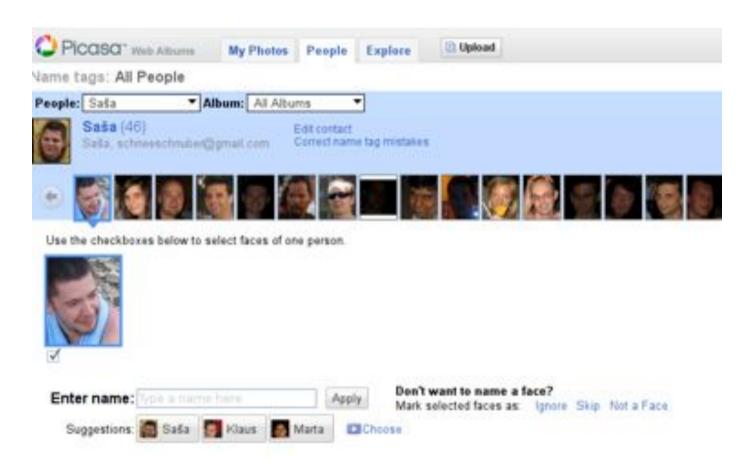
• ...

Image Annotation and Textual Retrieval

- Google image search
 - Restrict to photos/images showing faces


Picasa Name Tags

Label Persons in your images


Picasa Name Tags

Find images showing certain persons

Picasa Name Tags

Refine the model for a certain person

Direct Fusion in the Continuous Approach

 Given the result of a textual retriever, i.e. the scores for each of the images

$$(s_1^t,\ldots,s_n^t,\ldots,s_N^t)$$

- Use the ranks or the scores as a distance function in the continuous approach and treat it like a normal visual feature
 - Textual data is a feature like any other visual feature
 - Very flexible

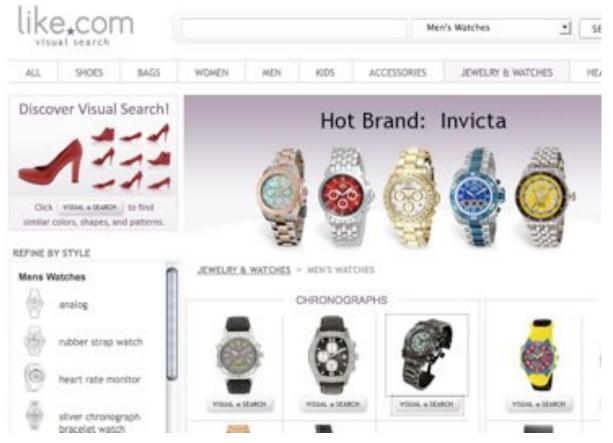
Direct Fusion in the Cont. Approach: Examples

Quenyewythytevistuaan a rod melximuad eestimepheent

Query by description

Direct Fusion in the Discrete Approach

- Given discrete image features and words
 - Create a joint index (i.e. inverted files) for both
 - Create individual indices for each and fuse later
 - GIFT uses a "late" fusion for 4 individual visual cues
 - Allows for a more flexible weighting


Query-based Fusion

- In certain domains, different queries might occur
 - E.g. in the medical domain, it can be distinguished between queries, that can be solved using
 - Visual techniques
 - Textual techniques
 - Mixed techniques

Fusion by Refining

Like.com

- Search in images from a certain category
- E.g. clothes, watches, ...

Fusion by Refining

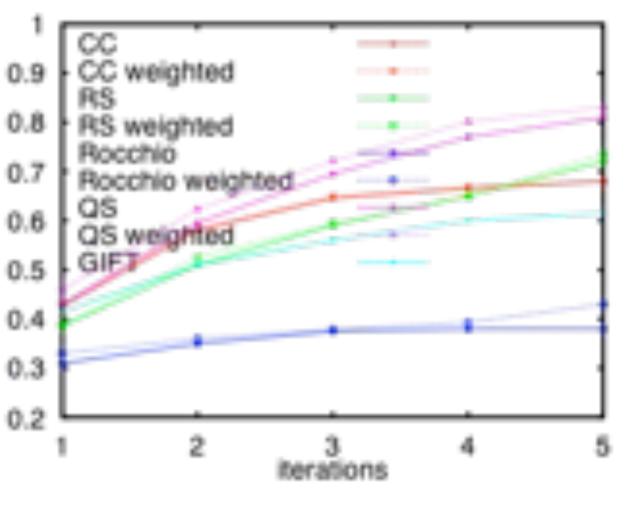
 Query a database using a textual query with a clear concept in mind, e.g.

Children playing

Cell phone

- Textual search will lead to a large amount of images, most not matching "your" idea
- Use visual techniques to refine the results

Some Results: Fusion by Refining


- Flickr Database
 - Created for evaluating fusion by refining
 - 10 queries

query	relevant	Po	description
beach	36	0.2	beach scene, e.g. for illustration of a vacation catalogue
bike	38	0.15	single bikes
construction			
site	32	0.1	construction site where construction workers are working
dancing	90	0.25	energetic dancer
desert	68	0.2	lonely desert scenes
			portrait images of dogs/images where the dog is the
dog	62	0.15	central them
mountains	122	0.15	mountain scenes w/o people
people eating			images where it can clearly be recognised that people are
ice	158	0.65	eating
people running	120	0.45	people running e.g. in a sports event
teacher in			classroom scenes where the teacher can clearly be
classroom	66	0.2	recognised

Results on the Flickr Task

• Use Flickr's result of the query as starting point, then use relevance feedback with visual methods to re-order the

images

Literature

- Proceedings of the ImageCLEF track in the CLEF Workshops 2003-2008
 - Photo retrieval
 - Medical Retrieval
 - www.imageclef.org
- iCLEF in CLEF 2007/2008
 - Multilingual retrieval in Flickr databases
 - Large-Scale Interactive Evaluation of Multilingual Information Access Systems the iCLEF Flickr Challenge.
 - P. Clough, J. Gonzalo, J. Karlgren, E. Barker, J. Artile, V. Peinado, Workshop on Novel Methodologies for Evaluation in Information Retrieval. 30th European Conference on Information Retrieval (ECIR 2008). 2008
- Clustering
 - Deselaers T., Keysers D., Ney H., "Clustering Visually Similar Images to Improve Image Search Engines",
 Informatiktage der Gesellschaft für Informatik, Bad Schussenried, Germany, Springer, pp. 302, 01/11/2003
- Direct fusion in the continuous approach
 - Deselaers T., Weyand T., Keysers D., Macherey W., Ney H., "FIRE in ImageCLEF 2005: Combining Content-based Image Retrieval with Textual Information Retrieval", CLEF Workshop 2005, vol. 4022, Vienna, Austria, Springer, pp. 652-661, 21/09/2005, 2006
- Fusion by refining
 - Paredes R., Deselaers T., Vidal E., "A probabilistic model for user relevance feedback on image retrieval",
 Workshop on Machine Learning and Multimodal Interaction, Utrecht, The Netherlands, pp. 260-271,
 08/09/20008, 2008